
Physical Memory Management in a Network Operating System

Michael Newell Nelson

Computer Science Division
Electrical Engineering and Computer Sciences

University of California
Berkeley, CA 94720

1

CHAPTER 1

Introduction

The work presented in this dissertation was motivated by two recent changes in

technology: networks and large memories. The introduction of networks has led to a

move away from centralized timesharing operating systems towards network operating

systems. In these network operating systems each user has a personal high-

performance workstation and communicates with other users across a network. Data

that was once stored on a single set of disks in the timesharing systems is now distri-

buted amongst the disks of several workstations. In fact, many of the workstations do

not have any disk at all; the data for these diskless workstations is stored across the net-

work on the disks of other workstations.

The move towards network operating systems poses two problems: how to provide

users with high performance and how to allow users to easily share data. Performance

is a problem in network environments because each access of data may require both a

network access and a disk access. Network accesses will be required if the data that is

being accessed is stored on another workstation’s disk; both diskless workstations and

workstations that are sharing data may have to perform many network accesses. The

performance problem can be solved by using the large memories which have recently

become available. The memories can be used to cache recently accessed file data and

thereby eliminate many network and disk accesses.

2

The problem with using large memories as caches of file data is that it may make

file sharing difficult. In order for users that are sharing files to get consistent results

they will need to see a consistent view of the file data; if one user writes new data to a

file, then subsequent reads of the file should return the most recently written data, not

some old stale data. In timesharing systems, guaranteeing that each user sees a con-

sistent view of files is easy because the data is only stored in one place; all reads and

writes of file data happen to one central place so each user is guaranteed to see the same

view of the file. However, in a network operating system that caches data, the data for a

particular file may potentially be distributed around the network in many workstations’

memories.

This thesis describes the design, implementation, and performance of several tech-

niques that use large physical memories to provide sharing and high-performance in a

network operating system. The method that I used to perform this research was to

design, build and measure the Sprite file system caching mechanism and the Sprite vir-

tual memory system as part of the Sprite operating system [OCD88]. In addition to

measuring the mechanisms used daily in Sprite, I also measured a variety of alternative

mechanisms; these measurements provide the first quantitative comparisons between

many of the popular memory-management techniques.

One major contribution of this dissertation is an exploration of the tradeoffs in

designing and implementing a distributed file data caching mechanism. I will show that

by effectively utilizing large physical memories as caches of file data, workstations can

achieve high performance even without using a local disk; this high performance can be

achieved while providing all workstations with a consistent view of file system data and

3

without overloading networks or server† machines. In addition I will demonstrate the

importance of the writing policy: the policy that determines when dirty data is written

back to the server or the disk. I will show that writing policies have a major impact on

performance.

Another contribution of this dissertation is in the area of the interaction between

the file system and the virtual memory system. I will present a simple mechanism that

allows the file system cache to vary in size in response to the needs of the virtual

memory system and the file system. This variable-size cache mechanism provides

better performance than a fixed-size file system cache of any size.

The last contribution of this dissertation is an analysis of the tradeoffs in one par-

ticular area of virtual memory management: fast process creation. When a new process

is created, the process is given a copy of its parent’s address space. As users begin to

take advantage of large memories, the size of processes may increase, which will

increase the cost of copying an address space. A common method of improving the

performance of process creation is by using copy-on-write: pages in the address space

are initially shared by the parent and child; a page is not actually copied until one of the

processes attempts to modify it. In this dissertation I will describe a simple copy-on-

write mechanism that has been implemented as part of Sprite. I will show that in prac-

tice this and other copy-on-write mechanisms may actually give worse performance

than the simpler copy-on-process-creation schemes.
hhhhhhhhhhhhhhhhhhhhhhhhhhh

† Throughout this dissertation the term server will be used when referring to workstations
that have local disks and the term client will refer to workstations that wish to access data stored
on non-local disks (i.e. server machine’s disks).

4

The rest of this chapter is divided into three sections. The first section credits the

other Sprite developers who helped me perform part of this research. The next section

provides an overview of the Sprite operating system, which I used to perform my

research. Finally, the last section presents an overview of the dissertation.

1.1. I versus We

The research presented in this thesis was done through the development and meas-

urement of the Sprite operating system. Sprite, which I will describe in the next sec-

tion, was not a one-person project; it involved 4 other people. All of the work that I

will present in this dissertation I did on my own except for the design of parts of the file

system. The file system was a joint project between myself and Brent Welch, where I

concentrated on the caching issues and Brent on the naming issues. In order to give

proper credit to the work of others, when I describe the design of the file system in

Chapter 3 and when I give the Sprite overview in the next section, I will use ‘‘we’’

instead of ‘‘I’’. In the rest of the dissertation where I describe work that I did on my

own I will use ‘‘I’’.

1.2. Overview of Sprite

Sprite [OCD88] is a new operating system implemented at the University of Cali-

fornia at Berkeley as part of the development of SPUR [Hil86], a high-performance

multiprocessor workstation. A preliminary version of Sprite is currently running on

Sun-2 and Sun-3 workstations, which have about 1-2 MIPS processing power and 4-16

Mbytes of main memory. The system is targeted for workstations like these and newer

models likely to become available in the near future, such as SPURs; we expect the

5

future machines to have at least five to ten times the processing power and main

memory of our current machines, as well as small degrees of multiprocessing. We hope

that Sprite will be suitable for networks of up to a few hundred of these workstations.

The interface that Sprite provides to user processes is much like that provided by

UNIX [RiT74]. The file system appears as a single shared hierarchy accessible equally

by processes on any workstation in the network (see [WeO86] for information on how

the name space is managed). The user interface to the file system is through UNIX-like

system calls such as open, close, read, and write.

Although Sprite appears similar in function to UNIX, we have completely re-

implemented the kernel in order to provide better network integration. In particular,

Sprite’s implementation is based around a simple kernel-to-kernel remote-procedure-

call (RPC) facility [Wel86], which allows kernels on different workstations to request

services of each other using a protocol similar to the one described by Birrell and Nel-

son [BiN84]. The Sprite file system uses the RPC mechanism extensively for cache

management.

1.3. Thesis Overview

This dissertation covers three areas: file caching, virtual memory, and the interac-

tion between the two. The first part of the dissertation (Chapters 2 through 5) covers

issues in file caching. Chapter 2 introduces the problems in file caching and discusses

previous work in this area. This includes a discussion of an important set of trace-driven

analyses that measured file activity in several timeshared UNIX 4.2 BSD systems

[Ous85]. These simulations yielded two important results which motivated the Sprite

6

caching design. First, they demonstrated the potential performance improvements pos-

sible through caching; they found that even small caches can greatly improve perfor-

mance. Second, they demonstrated that the policy that is used to manage dirty data

may have a big impact on performance. The best policy is to delay write-backs, so that

data is initially written to the cache and then written through to the disk or server some

time later.

Chapter 3 presents the design of the Sprite file system. The three goals that were

the driving force behind the Sprite design were high-performance, consistency and sim-

plicity. Like many other systems, Sprite attains high-performance by using caches on

both client and server workstations. However, in order to achieve the highest perfor-

mance possible the Sprite file system delays the writing of file data to the server and to

disk. Under the Sprite writing policy, clients and servers do not write back file data

until up to 30 seconds after the data is created. This delayed-write policy allows higher

performance but also introduces extra consistency and recoverability problems which

do not occur in other systems.

In spite of the complexities brought about because of the delayed-write policies,

Sprite guarantees that workstations see a consistent view of the file system, even when

multiple workstations access the same file simultaneously and the file is cached in

several places at once. This is done through a simple cache consistency mechanism

that flushes portions of caches and disables caching for files undergoing read-write shar-

ing. The result is that file access under Sprite has exactly the same semantics as if all of

the processes on all of the workstations were executing on a single timesharing system.

7

The goal of this research was not just to build a distributed file system but also to

provide quantitative measurements of the tradeoffs in cache design. Chapter 4 presents

the results of running a collection of benchmark programs against Sprite and measuring

the performance. On average, client caching resulted in a speedup of about 10-20% for

programs running on diskless workstations, relative to diskless workstations without

client caches. With client caching enabled, diskless workstations completed the bench-

marks only 0-8% more slowly than workstations with disks. Client caches reduced the

server utilization from about 5-27% per active client to only about 1-12% per active

client. Since normal users are rarely active, my measurements suggest that a single

server should be able to support at least 30 clients. In comparisons with Sun’s Network

File System [San85] and the Andrew file system [Sat85], Sprite completed a file-

intensive benchmark 30-35% faster than the other systems. Sprite’s server utilization

was three times less than NFS but three times higher than Andrew.

In addition to determining the effect of client caching, I was also interested in

exploring the reliability/performance tradeoff: what effect does making data storage

more reliable have on performance? The writing policy has a big impact on the level of

reliability. Chapter 5 gives the result of running benchmark programs with 9 different

writing polices on the client and 4 on the server. The results of the benchmarks indicate

that in order to achieve good performance, either the client or the server must use a

delayed-write policy; the absolute best performance is when they both use delayed-

write policies. More restrictive policies such as write-through can cause serious perfor-

mance degradation: if write-through is used on the server and on the client then bench-

mark programs execute from 25-100% more slowly than if the server uses a delayed-

8

write policy.

The results from running benchmarks on Sprite show that large file system caches

provide the best performance. However, large caches may conflict with the needs of

the virtual memory system, which would like to use as much memory as possible to run

user processes. Chapter 6 describes a simple mechanism through which the virtual

memory system and the file system of each workstation negotiate over the machine’s

physical memory. This simple mechanism allows the file system cache to change in

size as the relative needs of the virtual memory system and the file system change.

The Sprite negotiation mechanism requires that memory be traded between the

virtual memory system and the file system. What effect does this trading have on sys-

tem performance? Is there a case where the trading is so intense that a small fixed-size

cache would be best? Chapter 6 presents the results from a complex benchmark that

causes large shifts of memory between the virtual memory and file systems. It shows

that the variable-size cache is never worse than any fixed-size cache. In the best case,

when a large cache is needed, the variable-size mechanism works very well. In the

worst case, when large amounts of trading are required, its performance is the same as

that of a fixed-size cache.

One of the features of the Sprite variable-size cache mechanism is that it allows

file- and virtual-memory data to be treated differently. For example, the virtual-

memory system can be given an advantage over the file system when the two are nego-

tiating over the use of physical memory. The later part of Chapter 6 provides measure-

ments of the impact of penalizing the file system on the performance of two file- and

9

virtual-memory intensive benchmarks. It shows that penalizing the file system gives

better interactive response than without a penalty while not degrading overall perfor-

mance.

Most of this dissertation focuses on the file system caching mechanism and the

interaction between the file system and the virtual memory system. However, I was

also interested in looking at one particular virtual memory problem: copy-on-write

mechanisms for fast process creation. Chapter 7 presents a simple copy-on-write

mechanism that I implemented as part of Sprite. The mechanism is a combination of

copy-on-write (COW) and copy-on-reference (COR). The COW-COR mechanism can

potentially improve fork performance over copy-on-fork schemes from 10 to 100 times.

However, in normal use, most of the pages have to be copied anyway; the overhead of

handling additional page faults results in worse overall performance than copy-on-fork.

A pure copy-on-write scheme would eliminate 10% of the page copies required under

COW-COR, but may have worse overall performance than COW-COR on machines

with virtually-addressed caches, due to additional cache-flushing overhead. Even

highly optimized implementations can provide at best a 30% improvement in average

fork performance.

The final chapter of this dissertation, Chapter 8, offers some conclusions.

10

CHAPTER 2

File Data Caching

2.1. Introduction

File system caches have been used for many years on timesharing systems to

reduce the number of disk accesses. More recently they have begun to be used in distri-

buted file systems where there are caches on both servers and clients (see Figure 2-1);

the caches on server workstations are used to reduce disk traffic and the caches on

clients are used to reduce network traffic and server loading. This chapter examines the

previous work done in file system caching and the issues that must be addressed in

Client
Cache

Client
Cache

Server
Cache

Network

Server
Disk

Local
Disk

File
Traffic

File
Traffic

Server
Traffic

Server
Traffic

Disk
Traffic

Disk
Traffic

Figure 2-1. File caches in a distributed file system. When a process makes a file ac-
cess, it is presented first to the cache of the process’s workstation (‘‘file traffic’’). If
not satisfied there, the request is passed either to the local disk, if the file is stored there
(‘‘disk traffic’’), or to the server where the file is stored (‘‘server traffic’’). Servers
also maintain caches in order to reduce their disk traffic.

11

order to build an efficient distributed caching mechanism.

2.2. Server Caches

The purpose of a server cache is to improve client performance by reducing disk

accesses: data can be accessed from physical memory many times faster than from disk.

The most important metric in measuring the effectiveness of a server cache is the traffic

ratio: the ratio of physical disk accesses to logical accesses. Both reads and writes con-

tribute to the traffic ratio. Reads will require a disk access if the data being read is not

resident in the cache and writes will require a disk access if the modified data is written

to disk. How the write traffic impacts the traffic ratio depends on the writing policy

(see Section 2.4).

Although server caches have been implemented in several systems, the effective-

ness of server caches in these systems has not been analyzed in any detail. However,

there have been several attempts to predict the effectiveness of server caches by extra-

polating from traces of timesharing systems. A cache on a file server that services mul-

tiple clients should have behavior similar to that of a cache on a timesharing system

with multiple users; in both cases the cache is a centralized resource that is shared by

many users, where each client workstation represents a single user.

One study of server caching was a trace-driven analysis of file activity in several

timeshared UNIX 4.2 BSD systems [Ous85]. This study provided the main motivation

for the Sprite cache design and I will refer to it extensively throughout this chapter.

The systems studied by Ousterhout et al. were used for program development, text for-

matting, and computer-aided design. The study determined that for the traced systems

12

even small file caches are effective in reducing disk traffic, and that large caches (4-16

megabytes) work even better, cutting disk traffic by as much as 90 percent. The actual

improvement that can be gained from caching depends on the writing policy, which will

be explained below.

A study very similar to Ousterhout’s study was done by Kent at Purdue [Ken86].

He also did a trace-driven analysis of file activity in a timeshared UNIX 4.2 BSD sys-

tem, and his results were nearly identical to Ousterhout’s results.

One other study of disk caching was done by Smith, who used trace data from

IBM mainframes [Smi85]. Smith reported reductions in disk traffic similar to those

reported in Ousterhout’s study even though his data was much different. Unfortunately

Smith’s data did not distinguish read accesses from write accesses. Thus, he did not

determine the impact of the writing policy on the traffic ratio. Nevertheless, his results

indicate that caches from 2 to 8 megabytes are very effective, reducing disk traffic by

over 80 percent.

The results from the trace-driven analyses of timesharing traces indicate that

server caches should be very effective in reducing disk accesses. However, this has not

been verified by either measurement of existing systems or trace-driven analyses of

traces taken from networks of workstations.

2.3. Client Caches

Whereas the purpose of caches on server workstations is to reduce disk accesses,

the purpose of caches on client workstations is to reduce network accesses. If client

caches are as effective in reducing network traffic as server caches appear to be in

13

reducing disk traffic, then caches on clients could have a great impact on the perfor-

mance of clients, the load on file servers and the load on the network. A reduction in

the load on the network and the server will result in greater system scalability because

there can be more clients per network and more clients per server. The relation

between server load and system scalability was shown by Lazowska et al. [LZC86] in

a study of remote file access where they concluded that the server CPU is the primary

bottleneck that limits system scalability.

Caches can be used on clients for two purposes: to cache file data and to cache

naming information. Caching of file data reduces the number of read and write opera-

tions that require server accesses, and caching naming information can reduce the

number of open and close operations that require server accesses. In this section I will

concentrate on data caching, and in Section 2.5 I will explore the impact of name cach-

ing.

Systems that have implemented client caching have taken one of two approaches:

cache file blocks in memory (e.g. LOCUS [PoW85, Wal83] and Sun’s Network File

System (NFS) [San85]) or cache whole files on a local disk (e.g. Andrew

[Mor86, Sat85] and Cedar [SGN85]). The advantage of caching on a local disk is that

local disks are generally much larger than physical memories. However, caching in

main memory has numerous advantages over caching on a local disk. First, main-

memory caches permit workstations to be diskless. Second, data can be accessed much

more quickly from a cache in main memory than a cache on a local disk. Third, if the

studies done by Ousterhout or Kent are indicative of client cache performance, then

physical memories on client workstations are already large enough to provide high hit

14

ratios. As memories get larger, main-memory caches will grow to achieve even higher

hit ratios.

Although several systems have implemented client caching in various forms, none

of these systems has been analyzed to determine the impact of caching on system per-

formance. For example, Howard et al. [How88] showed that with caches on clients,

the load placed on the server by each client is very small. However, they did not deter-

mine what the load would have been if there had been no caches on the client worksta-

tions. The only analyses of the impact of client caching have been made with trace-

driven simulations from UNIX timesharing traces. These simulations have shown that

client caching can be effective in reducing network and server loading. Since the simu-

lations have depended on the writing policy and the cache consistency policy used, I

will not discuss the results of these simulations until after I have discussed the writing

policy issues and cache consistency policies.

2.4. Writing Policy

The performance advantages of caching depend on the policy used for handling

modified data blocks. In a distributed system, both the writing policy used on servers

and the policy used on clients can have a performance impact. Although different file

systems have used different writing policies, there have been no measurements of the

performance impact of the writing policy. However, results from four studies of UNIX

timesharing traces can be used to help predict the best writing policy for clients and

servers. In addition to the two previously-mentioned studies by Ousterhout and Kent

there are also studies that were done by Floyd [Flo86] and Thompson [Tho87]. Floyd’s

15

studies are nearly identical to Ousterhout’s studies so I will not mention them further.

Thompson’s study was a follow-on study to the study done by Ousterhout et al.;

Thompson’s results are based on very detailed traces of UNIX timesharing systems.

The simplest policy for managing modified data blocks is to write them through to

the server and/or the disk as soon as they are placed into the cache. NFS uses write-

through on the server and RFS [BLM87] uses write-through on clients. The advantage

of a write-through policy is its reliability: little information is lost when a client or

server crashes. However, each write must wait for the data to be written to the server

and/or disk, which results in poor write performance. Also, Ousterhout’s study deter-

mined that about 1/3 of all file accesses are writes. This means that with a write-

through policy disk or server traffic cannot be reduced by more than about 2/3. Kent’s

study of UNIX file system activity confirmed this by demonstrating that with a write-

through policy the traffic ratio was over 27 percent.

An alternative policy to write-through is buffered write, which delays the write to

the server or disk until the last byte of a cache block is written. If a user writes data in

chunks smaller than the file system block size, then disk and network traffic can be

reduced. This is actually the policy that was used by the Ousterhout study when the

authors measured the effect of different writing policies. Thompson simulated this pol-

icy and discovered that over half of all write traffic caused by a pure write-through pol-

icy can be eliminated with buffered write. Thus even buffering a single block can have

a profound effect on writing performance.

16

The Andrew and LOCUS systems use a writing policy called write-back-on-close.

Under this policy, writes return as soon as the data is in the cache, but the data is writ-

ten back to the server when the file is closed. This results in better write performance

but causes processes to wait when they close the file.

The policy used by NFS clients is a combination of write-back-on-close and

write-back-as-soon-as-possible (ASAP). When data is written to the cache it is

scheduled to be written through to the server as soon as possible†, but the write returns

immediately. When the file is closed, the client ensures that all of the file data has been

written through to the server. This should have similar performance to a pure write-

back-on-close policy except that the close of the file may not have to wait as long

because some of the dirty data may have already been written back when the file is

closed. Unfortunately, the Ousterhout study determined that most files are open only a

very short period of time: 75% of files are open less than 0.5 seconds and 90% less than

10 seconds. These short open times imply that many files may be not be open long

enough to allow their dirty blocks to be written back before the file is closed.

The best policy for performance is to delay the writing of blocks until the block is

ejected from the cache. A delayed-write policy has two advantages. First, writes and

closes can complete without waiting for data to be written through. Second,

Ousterhout’s study determined that 20 to 30 percent of new data is deleted within 30

seconds and 50 percent is deleted within 5 minutes. Under a delayed-write policy,

many blocks will never need to be written to disk at all; they will live and die in the
hhhhhhhhhhhhhhhhhhhhhhhhhhh

† NFS actually does not schedule the write-back of the block until the block is full.

17

cache. Unfortunately, a delayed-write policy has reliability problems, since large

amounts of data can be lost during a system crash. UNIX uses a compromise solution

in which blocks are not written through to disk until they have been in the cache for 30

seconds. This gives better reliability than a true delayed-write policy, yet eliminates 20

to 30 percent of server and/or disk writes.

A different type of policy that could be used is a combination of delayed-write and

write-through policies depending on the file type. This type of policy has not been

implemented in any system, but Thompson simulated two mixed policies. In one pol-

icy he varied from a 1 second delayed-write policy for editor temporaries up to full

delay for temporary files (he called this the mixed-policy), and in the other policy he

used buffered-write for all except temporary files (he called this the delay-temp policy).

The delay-temp policy provides a write traffic ratio slightly lower than the 30-second-

delay policy. The mixed-policy lies between the delay-temp policy and a 5-minute-

delay policy. Thus, by special-casing temporary files, clients can get write-traffic ratios

that are better than a 30 second delayed-write policy, but with higher reliability.

One thing to note about all of the UNIX studies is that their data does not include

writes of file meta-data: data that describes the contents of the file. In a UNIX file sys-

tem there are two types of meta-data: indirect blocks and file descriptor blocks. File

descriptors describe the attributes of the file and where the first few blocks for the file

are on disk. Indirect blocks are used to describe where the data blocks for large files are

kept on disk. Depending on the implementation of the file system, each write-back of

data may require writes of both indirect blocks and file descriptor blocks. For example,

if a write-through policy is used on a server, then each time that a data block is written

18

to disk for a large file both the file descriptor and the indirect block must be written to

disk as well; if the descriptor and indirect blocks are not written to disk, then during a

system crash the location of the data block may be lost. Thus, because of file meta-

data, write-through and similar types of policies may cause the traffic ratio to go up by

at least a factor of three.

2.4.1. Client and Server Writing Policies

In a system that contains both clients and servers, the best approach may be to use

different policies on the client and the server. For example, a policy that uses write-

through on servers and delayed-write on clients would result in no loss of data from a

server crash, yet allow clients to achieve very high performance. Unfortunately, there

have been no simulations or measurements of the various combinations of client and

server writing policies.

2.5. Cache Consistency

Allowing clients to cache files introduces a consistency problem. What happens if

a client modifies a file that is also cached by other clients? Can subsequent references

to the file by other clients return "stale" data? The definition of consistency that I will

use is that a client workstation sees a consistent view of a file if each read operation

returns the most recently written data for the file. The class of cache consistency algo-

rithms that I will examine in this section are all based on performing consistency on a

per-file rather than a per-block basis. This is the method used in most existing file sys-

tems and is practical because studies have shown that files are generally read and writ-

ten in their entirety [Ous85]. Per-file approaches are simpler and can potentially lower

19

the cost of consistency by requiring fewer consistency actions (one per file rather than

one per block).

It is important to distinguish between consistency and correct synchronization.

The cache consistency mechanism cannot guarantee that concurrent applications per-

form their reads and writes in a sensible order. If the order matters, applications must

synchronize their actions on the file using system calls for file locking or other available

communication mechanisms. The purpose of cache consistency is to eliminate the net-

work issues and reduce the problem to what it was on timesharing systems.

There are two types of write sharing that can cause consistency problems: sequen-

tial write-sharing and concurrent write-sharing (see Figure 2-2). Sequential write-

sharing occurs when a file is shared but is never open simultaneously for reading and

writing on different clients. This can result in clients maintaining stale data for a file in

their cache after they have closed the file. In order to achieve consistency, the client

must be able to detect this stale data by the time it reopens the file.

The other type of sharing is concurrent write-sharing. This type of sharing occurs

when a file is open on one or more clients at the same time and at least one of the

clients modifies the file. In this case a client must be able to detect its stale data when-

ever it attempts to read data from the file.

The amount of file sharing that occurs has an impact on the importance of cache

consistency. Jim Thompson analyzed the amount of file sharing that occurred in a

UNIX environment [Tho87] and got several interesting results:

20

Time

C1 has file
open for
writingwriting

open for
C2 has file

Time

reading
open for

C1 has file

C1 has file
open for
readingwriting

open for
C2 has file

reading
open for

C1 has file

Concurrent Write Sharing

Sequential Write Sharing

Figure 2-2. Sequential and concurrent write sharing. The figure on the top shows
sequential write sharing. C1 opens a file for reading, loads blocks into its cache and
then closes the file. C2 then opens the same file, modifies it and closes. When C1
opens the file again it needs to make sure that the data that it loaded into its cache
from the first open is not stale; C2 could have overwritten data that C1 had previously
loaded into its cache. The figure on the bottom shows concurrent write sharing. C1
opens a file for reading and before it closes it C2 opens the same file for writing; the
dark shaded region on the left shows the time where C1 and C2 are concurrently read-
write-sharing the file. After C2 opens the file C1 closes the file and then opens the file
for writing before C2 closes the file; the dark shaded region on the right shows the time
where C1 and C2 are concurrently write-write-sharing the file.

g 2.2% of the opens of files resulted in concurrent write-sharing.

g Only 2% of the bytes transferred were to files that were undergoing concurrent

write-sharing.

g Nearly all concurrent write-sharing occurred to a single file, the /etc/utmp file,

which keeps track of users logged on.

21

g Slightly more than 25% of all opens occur to files that are sequentially write

shared.

These results indicate that although concurrent write-sharing does happen, it is

very rare. In contrast sequential write-sharing happens fairly frequently (one out of

every 4 opens).

2.5.1. Previous Implementations of Cache Consistency

Each of the many network file systems in existence provides a different implemen-

tation and level of consistency. This section gives a survey of the current methods used

for cache consistency. All of the file systems that I will describe cache file data on both

client and server workstations.

2.5.1.1. NFS

NFS is based on stateless servers, which means that servers keep no information

that can be lost upon a server crash. This requires all state to be kept in non-volatile

memory (i.e. on disk). As a consequence of the stateless implementation, servers keep

no information about which clients have files open. This makes precise cache con-

sistency difficult. The result is that NFS does not provide exact cache consistency for

either type of sharing. If a file is undergoing concurrent write-sharing, then the out-

come is undefined. Users are warned to avoid this type of sharing. Sequential write-

sharing is handled using a probabilistic approach. Each client caches file version infor-

mation for three seconds. If when a file is opened, the local version information is less

than 3 seconds old, then the client believes that it has the most recent copy of the file.

Otherwise it will verify its version with the file’s server and flush its cache if necessary.

22

2.5.1.2. Cedar

The Cedar file system [SGN85] provides consistency through the use of ‘‘immut-

able files.’’ Each time that a file is modified, a new version of the file is created. When

a file is opened, a user specifies which version of the file to use. If the user specifies a

version that the client does not have cached on its disk, then a new copy of the file is

loaded from the server. Once a client opens a given version of the file, it is guaranteed

to see a ‘‘consistent’’ view of that version because the file is immutable; if two clients

are concurrently write-sharing a file, they will both be accessing different versions of

the file. Note that Cedar does not satisfy my definition of cache consistency because

once a file is open reads are not guaranteed to return the most recently written data.

2.5.1.3. Andrew

Andrew [Mor86, Sat85] only supports sequential write-sharing. If two clients are

undergoing concurrent write-sharing, then clients will not see a consistent view of the

file. Sequential write-sharing is supported by guaranteeing that, once a file is closed, all

data is back on the server, and by ensuring that a client is notified by the server when-

ever the client’s cached copy becomes out-of-date.

2.5.1.4. LOCUS

LOCUS [PoW85, Wal83] supports both concurrent and sequential write-sharing.

It uses a complex mechanism based on passing tokens between workstations that are

accessing the file. There are two types of tokens: read and write. A client must possess

a token in order to access a file. Multiple clients may hold a read token if there is no

write token. If there is a write token, then no client may possess a read token and only

23

one client may hold the write token. When a token is released, the file that the token

pertains to must be written back to the server and invalidated from the cache. The algo-

rithm must ensure that all sharers of a file get a fair chance at accessing the file.

2.5.1.5. Apollo

The Apollo Aegis file system [LLH85, Lea83] uses file locking to guarantee con-

sistency; consistency is not guaranteed unless clients lock files before they perform read

or write operations. A file can be locked by multiple clients when there are only

readers, and by only a single client if the file is locked for writing. Caches are kept con-

sistent by bringing a file to a consistent state when a client locks a file. Before a client

reads or writes a newly locked file, all stale data is removed from the client’s cache and

the server makes sure that it has the most recent data from the file. The file system

guarantees that the server has the most recent data by writing back all modified data

whenever a file is unlocked. Like in NFS, stale data is eliminated by associating a ver-

sion number with each file. This version number is the time that the file was last

modified. It is stored in the server that stores the file and in each client that has pages of

the file stored in its memory. When a client locks a file, it compares its version number

for the file with the version number returned by the server. If the version numbers do

not match, then the client removes the file’s blocks from its memory.

2.5.1.6. RFS

The RFS system [Rif86] handles both sequential and concurrent write-sharing.

Sequential write-sharing is handled by using a write-through writing policy and by con-

tacting the server whenever a file is opened to ensure that the cached copy is up to date.

24

RFS handles concurrent write-sharing by disabling client caching when it occurs. Since

RFS is based on write-through and hence must contact the server on every write, it can

detect on the first write to a file that concurrent write-sharing is about to occur. When it

detects this, it forces all reads and writes to go through to the server for the file that is

being shared.

2.5.1.7. V Storage Server

The V Storage Server at Stanford [ChR85] provides multiple approaches to con-

sistency. One approach is called T-consistency and is used for immutable files. The

data pages read from an immutable cached file are consistent with some version of the

file, either the current version or a version that is at most T milliseconds out of date.

Each client polls the server of cached files every T milliseconds to determine if its

cached files are up to date. The other approaches to consistency rely on block- or file-

level locking.

2.5.2. Verifying Consistency

All of the consistency mechanisms that I have described require that a client be

informed when a cached copy becomes out of date. This can be done in two ways: the

client can ask the server about the state of the file before it begins using it, or the server

can inform the client when the client’s cached copy becomes out of date. The first

approach generally requires that the server be contacted whenever a file is opened. This

has the advantage over the second approach that it does not require that clients use local

name caching; the server can do all name lookups for the client. However, because the

second approach allows opens to happen locally, it offloads the server and the network,

25

and decreases the amount of time that it takes for a client to open a file. Most systems

verify consistency when a file is opened or locked. The Andrew file system initially

verified consistency when a file was opened, but, after discovering that their servers

were becoming seriously overloaded, they changed to use the second approach

[How88].

2.6. Trace-Driven Analyses of Client Caching

Jim Thompson used UNIX traces gathered from a single timeshared machine to

perform a trace-driven simulation of the impact of client caching on performance

[Tho87]. In his simulations every user on the timesharing system represents a different

client. His measurements depend on which of 5 cache consistency algorithms are used;

all of his algorithms provide consistency for both concurrent and sequential write-

sharing. One of the cache consistency policies that Thompson simulated is the Sprite

policy, which I will describe in the next chapter; I will examine his results in more

detail after I describe the Sprite policy (see Section 3.3.4.2).

Thompson used two metrics to measure the impact of client caching. One is the

miss ratio, which is an indication of the effect of client caching in reducing server

interactions. The other metric is the transfer ratio, which reflects both server load and

network bytes transferred for all types of client requests including reads, writes and

opens. Thompson’s results indicate that, depending on the cache consistency policy

used, client caching can cut the miss ratio to 5-30 percent and lower the transfer ratio to

23-45 percent. Thus, client caching can potentially make clients run up to 20 times as

fast and reduce server and network loading by more than a factor of 4. However,

26

Thompson’s studies are merely an indication of the effect of client caching on perfor-

mance. The actual impact will depend on the fraction of time that each client spends

doing file system operations.

2.7. Summary and Conclusions

This chapter has explored the important issues in file data caching and its impact

on performance by looking at previous work done in this area. Because there has been

little measurement of the impact of file caching on real systems, the impact of caching

on performance can only be predicted by using the results of trace-driven simulations of

data taken from timesharing systems (e.g. from UNIX). The simulations show that

caches on client and server workstations can potentially have a large impact on perfor-

mance; the caches on servers can reduce the number of disk accesses, and the caches on

clients the number of server accesses. However, the simulations can only predict the

impact of caching on performance; the actual impact of caching on performance must

be determined by measuring a real system.

One important factor when designing a caching mechanism is the writing policy.

In a system that uses both client and server caching, the writing policy on both the

client and the server is important. Unfortunately, there have been simulations of writ-

ing policies that have looked at either the server’s policy or the client’s policy, but not

both together. Simulations indicate that the most effective writing policy is the

delayed-write policy, which provides the lowest number of disk and server accesses and

the smallest delay to user processes. However, delayed-write policies are also the least

reliable policies.

27

Another important factor to consider when designing a file system that uses client

caching is the cache consistency policy. In order to allow users to share files as easily

in a distributed system as they once could on timesharing systems files must be kept

consistent. However, most current distributed systems do not provide the same level of

consistency that was available in timesharing systems; some do not provide con-

sistency at all and others do not handle the case when a file is being concurrently write-

shared.

In summary, previous work in the area of file data caching has been lacking in

several important areas. First, there has not been any measurement of real systems; all

results have been obtained through trace-driven simulation. This goes for analyses of

caching performance, the effect of writing policies and the impact of cache consistency.

Second, there has not been any analysis of writing policies where both the client and the

server policies have been taken into account. Finally, most systems do not provide

strong enough consistency. The next three chapters address these areas by presenting

the design and measurement of the Sprite file system.

28

CHAPTER 3

Sprite File System Caching

3.1. Introduction

We had four main goals in mind when designing the Sprite caching mechanism:

g To build a high-performance file system for both clients with disks and clients

without disks.

g To gain insight into the tradeoffs involved in building a caching mechanism.

g To maintain UNIX semantics including supporting all normal user-level file sys-

tem operations.

g To keep things as simple as possible.

From the results given in the previous chapter, it was evident that the way to attain

the highest-performance file system was to use large file data caches on both clients and

servers. In addition, non-write-through caching on clients was clearly the method to

use to attain the highest possible writing performance; we chose to use a 30-second

delayed-write policy like the one used in the original versions of UNIX.

Although it was clear that caching was necessary to attain high performance, it

was not clear whether caches on clients were absolutely necessary; maybe caches on

servers would be enough. If client caches could be eliminated, then many portions of

the file system could be simplified; for example, there would be no cache consistency

problems. I was interested in measuring the impact of caching on diskless client

29

performance, network loading, and server loading. In order to allow these measure-

ments to take place the Sprite file system can disable client caching. This ability to turn

off caching is also used as part of the Sprite cache consistency algorithm.

In addition to providing clients with high performance, we also wanted to provide

the same view of file data to users of the Sprite distributed file system at that given by

timesharing UNIX; this includes providing the same user-level file system operations

that are supported by UNIX (see Table 3-1 for a list of file system operations supported

by Sprite). On timeshared UNIX, all the files and processes are on a single machine, so

each read returns the most recently written data; thus, users do not have to take any

explicit actions such as file locking in order to ensure data consistency. This allows

users to easily share file data without worrying about inconsistencies. In order to allow

easy sharing in Sprite, we provide a simple cache consistency mechanism that keeps

caches consistent both for concurrent and sequential write-sharing.

ii
Sprite User-Level File System Operationsii
Operation Actionii

open Open a file given a name.ii
close Close a file.ii
read Read data from a file.ii
write Write data to a file.ii

get attributes Get the attributes of a file
such as access times, file size
and permissions.iic

c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

Table 3-1. User-level operations supported by the Sprite file system. There are other
operations supported by Sprite (such as flock) but they are not relevant to the caching
issues described in this chapter.

30

A high-performance distributed file system, especially one that maintains cache

consistency, can potentially be complex. However, during the implementation of the

file system, we tried to make design decisions that would allow us to simplify the

implementation without sacrificing performance or consistency. One major simplifying

design decision was that we decided to do no local name caching; all naming operations

on files (e.g., open) and all closes of files must go through to the server of the file. This

simplified the file system for two reasons. First, we did not have to worry about name

caching at all. Second, it allowed us to build a very simple data cache consistency algo-

rithm. However, it had the potential to increase server load, as was discovered by the

Andrew file system when its authors also required that the server be contacted on each

file open [How88]. The next chapter will include a discussion of the impact of this

decision on Sprite file system performance.

The rest of this chapter covers the design of the caching mechanism in the Sprite

file system, and is organized as follows: Section 3.2 covers the basic structure of the

cache; Section 3.3 presents the Sprite cache consistency mechanism; Section 3.4

describes how files are represented on disk; Section 3.5 covers details of the implemen-

tation of the file system, including discussions of reliability and crash recovery.

3.2. Basic Cache Structure

The Sprite caches are organized on a block basis using a fixed block size of 4

Kbytes. The cache block size corresponds to the disk block size, which is also 4

Kbytes. We chose the disk block size based on the results obtained by McKusick et al.

[MJL84], who determined that large block sizes on the order of 4 Kbytes result in sub-

31

stantially better file system performance than smaller block sizes. In addition, studies

by Kent [Ken86] and Ousterhout [Ous85] also demonstrate the virtues of a large block

size. Whether the disk block size should be even larger is an open question which we

will address as we gain more experience with the system.

The choice to use a fixed block size was dictated by our striving for simplicity.

The other option was to use block sizes in the range from 1 Kbyte up to 4 Kbytes

depending on the amount of data in the block. The potential advantage of this scheme

is that it may waste less space than the fixed block size scheme. However, it is more

complex and, as memories get larger, the advantage of conserving file system cache

space should diminish.

3.2.1. Block Addressing

Cache blocks are addressed virtually, using a unique file identifier provided by the

server and a block number within the file. We used virtual addresses instead of physi-

cal disk addresses so that clients could create new blocks in their caches without first

contacting a server to allocate physical disk blocks. Virtual addressing also allows

blocks in the cache to be located without traversing the file’s disk map. By using vir-

tual addresses we were able to use the same implementation for the client cache as for

the server cache.

For files accessed remotely, client caches hold only data blocks. Servers also

cache file maps and other disk management information. These blocks are addressed in

the server’s cache using the blocks’ physical disk addresses along with a special ‘‘file

identifier’’ corresponding to the physical device.

32

Although a file’s disk map does not have to be consulted when locating a block in

the server’s cache, the map does have to be used when the block is read into the

server’s cache and when it is written to disk. Since looking in a file map is a fairly

expensive operation, the server keeps with each cache block the physical location of the

block on disk. In this way. the location of the block on disk only has to be looked up

when it is put into the cache, not when the block is written out to disk.

3.2.2. Writing Policy

As mentioned earlier, Sprite uses a 30-second delayed-write policy. Under this

policy, blocks are initially written only to the cache, and then written back 30 seconds

later. This policy is used both on servers and clients, and is implemented by having a

process scan through the cache every 5 seconds and schedule write-backs for all dirty

blocks that have not been modified in the last 30 seconds. A block written on a client

will be written to the server’s cache in 30-35 seconds, and will be written to disk in

30-35 more seconds. Thus a block can be dirty for up to 70 seconds before it ends up

getting written back to disk.

3.2.3. Block Management

Sprite uses a least-recently-used (LRU) block replacement strategy. Each block in

the cache that contains valid data is kept on a linked list called the LRU list; whenever a

block is accessed, it is moved to the tail of the list. All blocks that do not contain valid

data are kept on a separate list called the free list. A new block is allocated in the fol-

lowing manner. If the free list contains a block, then the first block on the free list is

used. Otherwise blocks are removed from the head of the LRU list until a clean block

33

is found; any dirty blocks that were removed from the head of the LRU list are

scheduled to be written back to the server’s cache or disk. Once a new block is allo-

cated it is moved to the tail of the LRU list.

Dirty blocks that need to be written back are kept on a dirty list that is associated

with each file, and all files with non-empty dirty lists are kept on a list of dirty files.

The dirty blocks are written back by a group of block cleaner processes. A dirty block

is scheduled to be written back either because it comes to the head of the LRU list or

because it is dirty and it has not been modified in 30 seconds. When a block is

scheduled for write back, it is put onto the dirty list for the file in which it resides, the

file is put onto the list of dirty files, and one of the block cleaner processes is awakened

and given the responsibility of writing back all the blocks on the file’s dirty list. In

order to reduce synchronization problems, there is only one process writing back a file’s

dirty blocks at any given time. Normally, after a block is written back, it is left in its

current position in the LRU list. However, if the block was placed onto the dirty list

because it came to the head of the LRU list and needs to be recycled, then it is put onto

the free list instead (see Figure 3-1 for a summary of the list data structures).

3.2.4. Synchronization

The Sprite kernel is written so that multiple processes can be executing in the ker-

nel at the same time. Since multiple processes could be accessing the same file at the

same time, the file system uses locking to ensure that only one operation is occurring on

a file at once. These operations include reading, writing, opening, closing, and getting

the attributes of a file. If multiple user processes wish to access the same file at the

34

B-3

In-use, dirty blocksIn-use, clean blocksUnused blocks

B-3

A-2A-1

File B

File A

Dirty Files

List of

B-2

A-2

C-1

B-1

A-1

LRU ListFree List

Figure 3-1. List data structures. The file system maintains three global lists and one
per-file list. All blocks that are not currently being used to cache file data are on the
free list. All blocks that are being used to cache data are on the LRU list. Dirty blocks
that are scheduled to be written back are on the dirty list for the file that they reside in
and all the file dirty lists are linked together. In this example there are 3 unused blocks
that are on the free list. The LRU list contains 2 blocks from file A (denoted A-1, A-
2), 3 blocks from file B (denoted B-1, B-2 and B-3) and one block from file C (denoted
C-1). Blocks A-1 and A-2 are dirty and they are both on file A’s dirty list because they
have been scheduled to be written back. Block B-3 is dirty and it is on file B’s dirty
list because it also has been scheduled to be written back. Block C-1 is also dirty but it
is not on file C’s dirty list because it has not been scheduled to be written back yet.

same time, the accesses will be serialized once the processes begin executing inside the

file system code. This explicit locking is required in order to protect kernel data struc-

tures that are associated with each file.

35

3.3. Cache Consistency

The Sprite file system provides cache consistency for both concurrent and sequen-

tial write-sharing. However, because of the expected infrequency of concurrent write-

sharing, the algorithm is optimized for the case when there is no concurrent write-

sharing. Sprite uses the file servers as centralized control points for cache consistency.

Each server guarantees cache consistency for all the files on its disks, and clients deal

only with the server for a file: there are no direct client-client interactions. The Sprite

algorithm depends on the fact that the server is notified whenever one of its files is

opened or closed, so it can detect when concurrent write-sharing is about to occur.

3.3.1. Concurrent Write-Sharing

Concurrent write-sharing occurs for a file when it is open by multiple clients and

at least one of them has it open for writing. Sprite deals with this situation by disabling

client caching for the file, so that all reads and writes for the file go through to the

server. When a server detects (during an ‘‘open’’ operation) that concurrent write-

sharing is about to occur for a file, it takes two actions. First, it notifies the client that

has the file open for writing, if any, telling it to write all dirty blocks back to the server.

There can be at most one such client. Second, the server notifies all clients that have

the file open, telling them that the file is no longer cacheable. This causes the clients to

remove all of the file’s blocks from their caches. Once these two actions are taken,

clients will send all future accesses for that file (both reads and writes) to the server.

The server’s kernel serializes the accesses to its cache, producing a result identical to

running all the client processes on a single timeshared machine.

36

Caching is disabled on a file-by-file basis, and only when concurrent write-sharing

occurs. A file can be cached simultaneously by many clients as long as none of them is

writing the file, and a writing client can cache the file as long as there are no concurrent

readers or writers on other workstations. When a file becomes non-cacheable, only

those clients with the file open are notified; if other clients have some of the file’s data

in their caches, they will take consistency actions the next time they open the file, as

described below. A non-cacheable file becomes cacheable again once it is no longer

undergoing concurrent write sharing; for simplicity, however, Sprite does not not re-

enable caching for files that are already open.

3.3.2. Sequential Write-Sharing

Sequential write-sharing occurs when a file is modified by one client, closed, then

opened by some other client. There are two potential problems associated with sequen-

tial write-sharing. First, when the second client opens the file, it may have out-of-date

blocks in its cache. To solve this problem, servers keep a version number for each file,

which is incremented each time the file is opened for writing. Each client keeps the

version numbers of all the files in its cache. When a file is opened, the client compares

the server’s version number for the file with its own. If they differ, the client flushes the

file from its cache. This approach is similar to those of NFS and of the early versions of

Andrew.

The second potential problem with sequential write-sharing is that the current data

for the file may be in some other client’s cache (the last writer need not have flushed

dirty blocks back to the server when it closed the file). Servers handle this situation by

37

keeping track of the last writer for each file; this client is the only one that could poten-

tially have dirty blocks in its cache. When a client opens a file, the server notifies the

last writer (if there is one and if it is a different client than the opening client), and waits

for it to write its dirty blocks through to the server. This ensures that the reading client

will receive up-to-date information when it requests blocks from the server.

3.3.3. Simulation Results

3.3.3.1. Cache Consistency Overhead

While we were designing the Sprite caching mechanism, I used the trace data from

the Ousterhout et al. study to estimate the overheads associated with cache consistency.

I also estimated the overall effectiveness of client caches. The traces were collected

over 3-day mid-week intervals on 3 VAX-11/780s running 4.2 BSD UNIX for program

development, text processing, and computer-aided design applications; see [Ous85] for

more details. The data were used as input to a simulator that treated each timesharing

user as a separate client workstation in a network with a single file server. The results

are shown in Table 3-2. Client caching reduced server traffic by over 70%, and resulted

in read hit ratios of more than 80%.

Table 3-3 presents similar data for a simulation where no attempt was made to

guarantee cache consistency. A comparison of the bottom-right entries in Tables 3-2

and 3-3 shows that about one-fourth of all server traffic in Table 3-2 is due to cache

consistency. Table 3-3 is not realistic, in the sense that it simulates a situation where

incorrect results would have been produced; nontheless, it provides an upper bound on

38

ii
Server Traffic With Cache Consistencyii

Client Cache Size Blocks Read Blocks Written Total Traffic Ratioii
0 Mbyte 445815 172546 618361 100%ii
0.5 Mbyte 102469 96866 199335 32%ii
1 Mbyte 84017 96796 180813 29%ii
2 Mbytes 77445 96796 174241 28%ii
4 Mbytes 75322 96796 172118 28%ii
8 Mbytes 75088 96796 171884 28%iicc

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

Table 3-2. Client caching simulation results, based on trace data from BSD study.
Each user was treated as a different client, with client caching and a 30-second
delayed-write policy. The table shows the number of read and write requests made by
client caches to the server, for different client cache sizes. The ‘‘Traffic Ratio’’
column gives the total server traffic as a percentage of the total file traffic presented to
the client caches. Write-sharing is infrequent: of the write traffic, 4041 blocks were
written through because of concurrent write-sharing and 6887 blocks were flushed
back because of sequential write-sharing.

the improvements that might be possible with a more clever cache consistency mechan-

ism.

I performed these simulations before we implemented our Sprite file system

design, so that I could determine if our design was sound. The results from these simu-

lations show that a) client caching can greatly reduce server traffic and b) our cache

ii
Server Traffic, Ignoring Cache Consistencyii

Client Cache Size Blocks Read Blocks Written Total Traffic Ratioii
0 Mbyte 445815 172546 618361 100%ii
0.5 Mbyte 80754 93663 174417 28%ii
1 Mbyte 52377 93258 145635 24%ii
2 Mbytes 41767 93258 135025 22%ii
4 Mbytes 38165 93258 131423 21%ii
8 Mbytes 37007 93258 130265 21%iicc

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

Table 3-3. Traffic without cache consistency. Similar to Table 3-1 except that cache
consistency issues were ignored completely.

39

consistency algorithm does not introduce a significant overhead. These results

strengthened our hypotheses about the effectiveness of client caching and our simple

cache consistency algorithm, and indicated to us that we should proceed with the imple-

mentation.

3.3.3.2. Simulation of Several Mechanisms

Jim Thompson [Tho87] did a much more detailed simulation of cache consistency

policies than we did. He simulated not only the Sprite policy, but several other policies

as well. His simulation was done after we had already implemented the Sprite mechan-

ism, used the same detailed traces that were described in Chapter 2, and used his

transfer ratio, a complex measure of server and network loading, as the metric by which

to judge performance. The Sprite mechanism was by far the simplest of all the mechan-

isms that he simulated, but also had the worst performance of all of the methods, with a

transfer ratio of 45%. He estimates that the transfer ratio can be lowered to 35% if

opens and closes do not have to go through to the server and to 23% if very sophisti-

cated and potentially less practical algorithms are used. The result is that a sophisti-

cated algorithm can reduce the transfer ratio by up to a factor of 2.

Thompson’s simulations indicate that the Sprite algorithm may provide a much

higher load on the network and the server relative to more sophisticated algorithms.

The results in the next chapter will support Thompson’s results by showing that, if

clients are allowed to cache naming information so that they can open and close files

without contacting a server, the server utilization and network utilization can be cut by

nearly a factor of 2. However, the next chapter will also show that, even with the sim-

40

ple Sprite cache consistency algorithm, client caching provides excellent diskless client

performance while reducing the server load and network load to very reasonable levels.

Thus, although more complex cache consistency algorithms may reduce server and net-

work loading, in practice it does not matter; the use of client caching is much more

important to performance than which cache consistency algorithm is used.

3.4. Sprite File Structure on Disk

The Sprite file system’s data structures used to describe where files are located on

disk are similar to the UNIX data structures. Each disk contains three types of data: file

descriptors, file data blocks and indirect blocks. Among other file attributes, each file

descriptor contains information about where on disk a file’s data blocks are located.

Each descriptor contains 10 direct block pointers, one singly-indirect block pointer and

one doubly-indirect block pointer (see Figure 3-2).

The file descriptors contain low-level descriptions of files. Built on top of the file

descriptors is the directory structure, which gives a mapping from a file name to a file

descriptor. As in UNIX, in Sprite directories are stored like normal files. Each direc-

tory contains a list of (file name, file descriptor id) pairs; the file descriptor identifier is

used to locate the file descriptor for the file.

Although Sprite’s file descriptor and directory structures are similar to those in

UNIX, the organization of the disk is different; we decided to concentrate our efforts on

building an efficient caching mechanism rather than on optimizing disk performance.

All of the file descriptors are grouped together at the beginning of the disk; since each

file descriptor is only 128 bytes, each file system block contains 32 file descriptors. The

41

Ref Time: Oct. 3, 1988

Owner: Nelson

Block pointers:

D-0 D-1 D-9 SI DI

Block 0 Block 1 Block 9 D-0 D-1 D-n

Block 10 Block 11 Block 1033

SI-0 SI-1 SI-n

Block 1034 Block 1035 Block 2057

D-0 D-1 D-n D-nD-1D-0

Block 3081Block 2059Block 2058

Figure 3-2. File disk structure. Among other attributes such as the reference time and
the owner, a file descriptor contains the location of the data blocks on disk. Each
descriptor contains 10 direct block pointers, 1 singly-indirect block pointer and 1
doubly-indirect block pointer. In this picture the direct block pointers are denoted D-0
through D-9 and they contain the disk addresses of blocks 0 through 9 in the file. The
singly-indirect block pointer is denoted SI and it points to a block of 1024 direct block
pointers; these pointers point to blocks 10 through 1033 in the file. The doubly-
indirect block pointer is denoted DI and it points to a block with 1024 singly-indirect
block pointers. The first singly-indirect block contains pointers to blocks 1034 through
2057 in the file, the second singly-indirect block points to blocks 2058 through 3081
and so on.

rest of the disk consists of data blocks and indirect blocks.

When a new block is allocated to a file, a data block and possibly an indirect block

will have to be allocated. If a data block has no preceding block in the file, then a

42

random data block is chosen out of all available data blocks. Otherwise, a block that is

nearest on the disk to the preceding block is chosen. This is done to reduce the number

of seeks between reads and writes of successive data blocks. When an indirect block is

allocated, a random block is chosen.

When a new file is created, a file descriptor must be allocated for the new file. If

the file that is being created is a normal file, then Sprite attempts to allocate a file

descriptor that is in the same or nearby file descriptor block as the file’s directory. This

allows the file descriptors for many files within a given directory to be read or written

with only one disk operation. When a new directory is created it is put into a random

descriptor block. This is done so that the directories will be randomly distributed

amongst the file descriptors; otherwise all directories would end up fighting for file

descriptors in the same file descriptor blocks.

There are two potential problems with the simple Sprite disk layout. First, when a

block is allocated to a file, Sprite chooses the nearest block on disk even if the block is

not rotationally optimal; the result is that, in general, Sprite is only able to transfer one

block per disk revolution. Second, Sprite does not attempt to put either the file descrip-

tor or the indirect blocks for a file near to the data blocks for the file. This is different

from the UNIX 4.2 BSD implementation, which puts file descriptors, indirect blocks

and data blocks for a file within the same group of cylinders on disk [MJL84]. The

result is that Sprite may have to perform longer seeks between reads and writes of the

three types of disk data. Because all three types of data are cached by Sprite, reading

the data from disk should not be a problem. However, the disk layout does impact writ-

ing performance and will be discussed further in Chapter 5.

43

3.5. Details of the Implementation

3.5.1. Implementing Delayed-Write

The delayed-write policy used by Sprite provides good writing performance but it

complicates the implementation of the file system in two ways. First, since the server is

not contacted on every write of data, disk space cannot be allocated for newly written

data blocks. This means that, when the client eventually writes the new block back to

the server (as much as 35 seconds later) there may be no disk space available; what is

even worse is that the user process that wrote the data to the cache may have exited

with the belief that the data that it generated is safe. This is handled in Sprite in a sim-

ple manner: when it is detected on a delayed write that there is no disk space available,

the user is informed of the situation (including the names of files that cannot be written

back), and the delayed write will be tried again 30 seconds later. It is up to the user to

free up enough space on disk to store the data that cannot be written back.

Another complication from the delayed-write scheme is that, for up to 35 seconds

after new data is written, the client, not the server, will know the current modify time

for the file and the current file size. Likewise, since reads do not go through to the

server, the client will also know the current access time for the file. This presents a

problem if a client other than the one with the most up-to-date attributes tries to get the

attributes of a file. Since in Sprite all attempts to get the attributes of a file must go

through to the server of the file, the server can keep the attributes consistent. If the

server detects that it does not have the most recent attributes for a file, it will retrieve

the attributes from the client that does have the most recent attributes. This call-back

44

mechanism is implemented in a similar way to that used for cache consistency

explained above.

3.5.2. Providing Reliability

The design of the Sprite file system has emphasized performance, not reliability.

We chose to use a 30-second delayed-write policy similar to the one that has been used

successfully in many versions of UNIX for the past 15 years. The use of the 30-second

delayed-write policy introduces the possibility of data getting lost on a system crash: up

to 35 seconds of data on a client crash, and up to 70 seconds on a server crash. In order

to reduce the likelihood of data getting lost during a crash, the Sprite caching code has

been carefully written, so that, when a machine crashes, there is a high probability that

it can write its cache back to the server or to disk. This is done by ensuring that the

cache write-back code only relies on either the RPC system or the disk sub-system to be

functional; both of these are very stable and have no known bugs.

Even though the cache can usually be written back on system crashes, there is still

the possibility of lost data. In fact, because of the behavior of certain important pro-

grams that manage files (e.g., source code control systems and editors), much more seri-

ous damage can occur on a system crash. For example in the mx editor developed by

John Ousterhout, whenever the file that is being edited is saved by the user, the editor

truncates the file and rewrites it. The truncate command goes through to the file server

so that disk space can be reclaimed, but the rewritten data does not for at least 30

seconds. As a result, on a system crash the entire contents of the file, including data

that could have been written in days past, can be lost.

45

In order to provide higher reliability to those programs that require it (e.g., edi-

tors), the file system provides a function, callable by user programs, that forces a file to

be synchronously flushed from the client’s cache to the server’s disk. This function

only provides a partial solution to the reliability problem, because a crash could occur

between a file truncation operation and a forced write-back operation; the truncation

will delete the file data and the new data may be lost during the crash. A common solu-

tion used by many programs is to use temporary files and file move operations. A pro-

gram that used this method would first write data to a temporary file, force the data to

be written through to the server’s disk, and then rename the temporary file so that it has

the same name as the original file. In order for this to work safely, the file system pro-

vides an atomic file rename operation with the semantics that either the original copy of

the file exists or it has been replaced by the new copy of the file.

The solutions that have been used in other file systems to provide a higher measure

of reliability than Sprite’s are based on file versions [CaW86, SGN85] or atomic tran-

sactions [BKT85, PoW85]. The systems that use file versions create a new version each

time that a file is written. Thus, files will never be destroyed as a result of client or

server crashes, because old versions of files will remain safely on disk. We chose not to

use the version mechanism so that we could stay compatible with the standard UNIX

paradigm for accessing files.

Transaction systems guarantee that, when a file is rewritten, either the new version

of the file will exist or the old version will exist, but the file’s original contents will not

be lost. We did not implement transactions for two reasons. First, we did not feel that

the application environment that we were targeting for required transactions. Second,

46

transactions are inherently complex and potentially have a negative impact on perfor-

mance.

Although Sprite does not provide the same measure of reliability as some other

systems, we are satisfied with its reliability. Data does still occasionally get lost during

system crashes, but the system is becoming much more stable and, as a result, file data

is rarely lost. We could have made the system more reliable by using transactions or

file versions, but it would have resulted in a more complex and possibly less efficient

implementation. The delayed-write policy used in Sprite is a compromise between reli-

ability and performance: it gives the best performance while giving reliability that is

quite acceptable in our environment.

3.5.3. Cache Consistency Implementation

Although the Sprite cache consistency mechanism is simple in principle, there are

several complexities in its implementation. One such complexity is synchronizing

access to the per-file cache state information. In order to allow the server to determine

the consistency state for a file, the server maintains two pieces of state information for

each file: a list of clients that are using the file and the client that was the last writer.

The server does not need to maintain state information about clients that have closed a

file and only have clean data in their cache; version number verification at file open

time will keep these files consistent. Access to the consistency data structures must be

serialized. For example, when a file is being opened, no other open of the file can occur

until the file is brought to a consistent state, because another open could potentially

change the cacheable state of the file.

47

In order to allow files to be safely brought to a consistent state the file system has

two types of locks for each file. One lock is called the I/O lock and is used to ensure

that only one read or write can occur to a file at one time; this lock is necessary to pro-

tect certain kernel data structures associated with each file. The other lock is called the

consistency lock and is used to synchronize access to the cache consistency data struc-

tures. Two separate locks are required because the act of bringing a file to a consistent

state may require that the server call back to clients to force them to write back their

dirty data. Thus, while access to the cache consistency data structures for a file is being

serialized, a write to the file must be able to occur.

Another complexity in the Sprite cache consistency mechanism is performing the

client call-backs when the cacheable state of a file changes. Inherent in any network

implementation is the possibility that messages may arrive out of order. One possible

way that this can happen is when messages get lost and have to be resent. This message

ordering problem adds the potential of a race condition to the Sprite cache consistency

algorithm (see Figure 3-3). When the open of a file by a client completes, the server

sends back a reply to the client that indicates whether the file is cacheable or not. Once

the reply is sent, an open by another client can occur on the file. If the second open

makes the file change from cacheable to non-cacheable then the server will send a mes-

sage to the first client telling it not to cache the file after all. However, if the reply to

the first open gets lost, then the server’s message telling the client not to cache the file

could be received before the reply from the open. Therefore if a client derives the

cacheable state for a file from the most recent server message about the file, a client

could erroneously believe that it can cache a file.

48

Client 1 Server Client 2

Open "f1" for reading

Open reply: "f1" cacheable

Message lost Open "f1" for writing

"f1" not cacheable

Open reply: "f1" not cacheable

Open reply resend: "f1" cacheable

Figure 3-3. Open race condition. Client 1 opens file f1 for reading. The server sends
a reply to the open which indicates that the client can cache the file. However, the re-
ply gets lost. Before the server detects that the reply got lost, client 2 opens file f1 for
writing. Since client 1 has the file open for reading, the server detects that concurrent
write sharing is about to occur, tells client 1 that it can no longer cache the file, and re-
plies to client 2. The server then resends the reply to the original open request made
by client 1. If client 1 only pays attention to the last message from the server, then it
will mistakenly think that it can cache file f1.

This race condition is solved by introducing open time stamps (see Figure 3-4).

Each time that a client opens a file, the server stores the time when the open occurred

with the client state information it keeps with each file. This time stamp is also sent

back to the client with the open reply, and clients keep the most recent time stamp with

each file. When a server sends a cache consistency message for a file to a client, it

includes the time of the most recent open of the file by that client. There are three pos-

sibilities when a client receives a consistency message. The most likely possibility is

that the client and server time stamps are equal. In this case the client will process the

message and inform the server when it has finished taking the necessary cache

49

consistency actions. The second possibility is that the client’s time stamp is greater

than the server’s time stamp. When this happens the client will drop the message

because it realizes that the message pertains to an old open of the file.

The final possibility is that the client’s time stamp for the file is less than the

server’s time stamp; this is the race condition that the time stamps were designed to

solve. When this occurs, the client realizes that the server is referring to an open for

which the client has yet to receive the reply. The client will force the server to resend

the message in the hope that the open reply will come in before the server is able to

resend the cache consistency message (see Figure 3-4). The reason why the client

forces the server to resend rather than queue up the message was done for to reduce the

amount of state information to be maintained by the client.

One final detail of the implementation is the management of the last writer infor-

mation. Since Sprite uses a 30-second delayed-write policy, all of a file’s blocks will be

up-to-date in the server’s cache within 35 seconds after the file is closed on the client.

There is no reason to maintain the last writer information when there are no more dirty

blocks in the last writer’s cache. This state information is cleaned up by having the

client inform the server when it no longer has dirty blocks for a file; this can happen

either when the file is closed or when the last dirty block is written back. This is not

only an optimization, but is also a necessity in order to allow client workstations to

clean up state information for files that are no longer cached. If a client deletes the state

information about a closed file, it will not be able to handle cache consistency messages

for the file; it will not know if a cache consistency message is for an open that has not

yet completed or for an open that happened before the file state information was

50

Open "f1" for reading

Open reply: "f1" not cacheable, TS=3

Reply: Cache consistency done

Retry: "f1" not cacheable, TS=2

Open "f1" for reading

Open reply: "f1" cacheable, TS=1

Open reply: "f1" cacheable, TS=2

Open reply resend: "f1" cacheable, TS = 2

Reply: Timestamp too big

"f1" not cacheable, TS=2

Open "f1" for writingMessage lost

Client 2ServerClient 1

Figure 3-4. Solution to open race condition. The problem is solved with time stamps.
Client 1 first opens file f1 for reading and gets back a time-stamp equal to 1. Client 1
then opens f1 again for reading, but this time the server’s reply gets lost. Before the
server detects that the reply got lost, Client 2 opens file f1 for writing. The server
detects that concurrent write sharing is about to occur and sends a cache consistency
message to Client 1. However, by comparing time stamps Client 1 determines that the
server is referring to an open that the client has not got the reply for yet. As a result
the client tells the server that the time stamp that it gave was too large and it should try
again. Meanwhile the server resends the reply to the latest open for Client 1. The
server then resends the cache consistency message. This time the client has the same
time stamp as the server. Once the server gets the successful reply from Client 1 it re-
plies to the open from Client 2.

51

cleaned up. Thus, the client must ensure that the server knows that the client no longer

has dirty blocks for a file before it deletes important state information.

Unfortunately, there is a race condition when trying to detect that a client no

longer has dirty blocks for a file. When a file is closed, the client must determine if it

has dirty blocks for the file. If not, it includes with the close message an indication that

it does not have any dirty blocks for the file. In addition, when a client writes back a

dirty block (as part of a 30-second dealyed write) it must indicate to the server whether

or not this is the last dirty block for the file. The race occurs between the delayed

write-back and the close. Assume that when a file is closed there remains one dirty

block. The client will inform the server in this case that it still has dirty blocks for the

file. Now assume that, immediately after the close, the last block for the file is written

back. On this operation, the client will inform the server that there are no more dirty

blocks for the file. The problem occurs if the write-back message arrives before the

close message. The server cannot believe the write-back message because it thinks that

the file is still open on the client and that the client can still generate dirty blocks. How-

ever, if the server ignores the write-back message, then it will lose the fact that there are

really no more dirty blocks for the client. This problem is solved by synchronizing

delayed write-backs and closes: while a file is being written-back, the file cannot be

closed and vice versa. This guarantees that the messages will arrive in the right order.

3.5.4. Crash Recovery

One of the disadvantages of the Sprite caching mechanism is that servers must

maintain a large amount of state information in their main memories. This includes

52

both file data as well as information about which clients have open files. In order for

clients to be allowed to continue after a server crashes and reboots, this state must be

recoverable. In contrast, the servers in Sun’s NFS are stateless. This results in less

efficient operation (since all important information must continually be written through

to disk), but it means that clients can recover from server crashes: the processes are put

to sleep until the server reboots, then they continue with no ill effects.

Sprite’s approach is to recover from the most common cases and be able to detect

when uncommon, non-recoverable cases occur. The server’s state information about

open files is recovered with help from the clients. The Sprite RPC system allows

clients to determine when a server crashes and when a server reboots. When a client

detects a server crash, it delays write-backs of dirty blocks to the server until it detects a

reboot. When the server reboots, the client attempts to reopen all of its files and then

writes back any dirty blocks that need to be written back to the server.

In all but two cases, a client will be able to reopen its files and continue normally.

The first case is a race condition between clients reopening files and clients opening

files; in some cases a cache consistency violation may occur. For example, assume that

client C1 is caching file F1 for writing when the server crashes. Now if, when the

server reboots, client C1 is unable to reopen F1 before some other client opens F1, then

a cache consistency violation will occur. If such a violation occurs, the reopen fails.

The probability of these violations occurring is diminished by having servers give

clients time to reopen their files before accepting new opens for files.

53

The second case where a client will not be able to reopen files is when the server

lost dirty blocks that the client had written back. The current mechanism that is used to

handle this case is to detect when the server is unable to write-back its data to disk on a

crash. When the system reboots, if it was able to successfully write back its cache to

disk when it crashed (the server marks its disk when it is able to successfully flush the

cache), then clients are allowed to reopen files normally. Otherwise, all reopens for

files on the disk are refused. As mentioned earlier, the file caching code is carefully

written, so that, unless there is an error in the cache data structures or the disk sub-

system, the server will be able to write its cache back to disk; based on current experi-

ence with the system, the server very rarely fails while trying to write its cache to disk

after a crash.

The other option that can be used to allow the server to recover file data informa-

tion after it reboots is to use a more secure writing policy. For example, if file servers

used a write-through policy, then there would be no chance of data getting lost on a

server crash. Chapter 5 looks into the performance impact of such a writing policy.

3.6. Summary

In this chapter I have presented the design of the Sprite file system. The file sys-

tem has been designed for high performance and to maintain the ease of file sharing that

was available in timesharing systems. In order to achieve this performance, Sprite pro-

vides caching on both client and server machines. A 30-second delayed-write policy is

used on both client and server machines in order to get the best writing performance.

The file system guarantees workstations a consistent view of the file data, even when

54

multiple workstations access the same file simultaneously and the file is cached in

several places at once. This is done through a simple cache consistency mechanism

that flushes portions of caches and disables caching for files undergoing read-write shar-

ing. The result is that file access under Sprite has exactly the same semantics as if all of

the processes on all of the workstations were executing on a single timesharing system.

One of the disadvantages of the Sprite approach is that it is not as reliable as many

other systems because we set performance as our primary goal. This introduced a few

potential reliability problems, which we are solving as we encounter them. I am

confident in our ability to provide an acceptable level of reliability. Efficient methods

of providing better reliability by allowing programs to force data onto the server’s disk

will be discussed in Chapter 5.

Although the file system must maintain state information in order to provide cache

consistency, it is designed to gracefully recover from most client and server crashes.

The recovery mechanism is designed so that full recovery is possible in the normal

case, but certain rare cases may not be recoverable. The mechanism is simple, yet

should work in most cases.

55

CHAPTER 4

File System Performance

4.1. Introduction

This chapter presents performance measurements of the benefits of client data

caching. The measurements were made by running a series of file-intensive benchmark

programs against the Sprite file system. The goal was to measure the benefits provided

by client caches in reducing delays and contention:

g How much more quickly can file-intensive programs execute with client caches than

without?

g How much do client caches reduce the load placed on server CPUs?

g How much do client caches reduce the network load?

g How many clients can one server or network support?

g How will the benefits of client caches change as CPU speeds and memory sizes

increase?

All of the measurements were made on configurations of Sun-3 workstations (about 2

MIPS processing power). Clients were Sun-3/75’s and Sun-3/160’s with at least 8

Mbytes of memory, and the server was a Sun-3/180 with 16 Mbytes of memory and a

400-Mbyte Fujitsu Eagle disk.

56

4.2. Micro-benchmarks

I wrote several simple benchmarks to measure the low-level performance of the

Sprite file system. The first set of benchmarks measured the time required for local and

remote invocation of four common file lookup operations (see Table 4-1). The remote

versions took 3-6 times as long as the local versions; about half of the elapsed time for

the remote operations was spent executing in the server’s CPU. The second set of

benchmarks measured the raw read and write performance of the Sprite file system by

reading or writing a single large file sequentially. Before running the programs, I

rigged the system so that all the accesses would be satisfied in a particular place (e.g.

the client’s cache). Table 4-2 shows the I/O speeds achieved to and from caches and

disks in different locations.

Table 4-2 contains two important results. First, a client can access bytes in its own

cache 7-8 times faster than those in the server’s cache. This means that, in the best

ii
File Lookup Operationsii

DisklessiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiOperation Local Disk
Elapsed Time Server CPU Timeii

Open/Close 3.30ms 10.06ms 5.34msii
Failed Open 1.30ms 4.15ms 2.08msii

Get Attributes 1.10ms 4.32ms 2.21msii
Get Attributes ID 0.54ms 3.63ms 1.71msiic

c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c

cc
c
c
c
c
c
c

cc
c
c
c
c
c

c
c
c
c
c
c
c
c
c

Table 4-1. Cost of four common file lookup operations in Sprite. Each of these opera-
tions requires contacting the server of the given file. Times are milliseconds per opera-
tion on a pathname with a single component. The first row is the cost of opening and
closing a file, the second row is the cost of opening a file that does not exist, the third
row is the cost of getting the attributes of a file (‘‘stat’’), and the fourth row is the cost
of getting the attributes of a file that is already open.

57

case, client caching could permit an application program to run as much as 7-8 times

faster than it could without client caching. The second important result is that a client

can read and write the server’s cache at about the same speed as a local disk. In the

current implementation the server cache is twice as fast as a local disk, but this is

because Sprite’s disk layout policy only allows one block to be read or written per disk

revolution. We expect eventually to achieve throughput to local disk at least as good as

4.3BSD’s, or about 2-3 times the rates listed in Table 4-2; under these conditions, the

local disk will have about the same throughput as the server’s cache. In the future, as

CPUs get much faster but disks do not, the server’s cache should become much faster

than a local disk, up to the limits of network bandwidth. For example, if the clients and

servers were 8-MIPS Sun-4s instead of 2-MIPS Sun-3s, then a client should be able to

read the server’s cache up to 4 times as fast as a local disk. Even for paging traffic, this

suggests that a large server cache may provide better performance than a local disk.

4.3. Macro-benchmarks

The micro-benchmarks discussed in the previous section give an upper limit on the

costs of remote file access and the possible benefits of client caching. To see how much

these costs and benefits affect real applications, I ported several well-known programs

ii
Read & Write Throughput, Kbytes/secondii

Local Cache Server Cache Local Disk Server Diskii
Read 3357 470 222 207ii
Write 2786 368 200 178iic

c
c
c
c

c
c
c
c

c
c
c
c

c
c
c
c

c
c
c
c

c
c
c
c
c

Table 4-2. Maximum rates at which programs can read and write file data in various
places, using large files accessed sequentially.

58

from UNIX to Sprite and measured them under varying conditions. I ran each bench-

mark three times for each data point measured and took the average of the three runs.

Table 4-3 describes the benchmark programs. See Appendix A for detailed tables with

the results of running the 5 benchmarks including standard deviations.

4.3.1. Application Speedups

Table 4-4 lists the total elapsed time to execute each of the macro-benchmarks

with local or remote disks and with client caches enabled or disabled. Without client

caching, diskless machines were about 10-20% slower than those with disks; one

benchmark, Diff, was actually 85% slower on diskless machines than on machines with

disks. With client caching enabled and a warm start (caches already loaded by a previ-

ous run of the program), the difference between diskless machines and those with disks

was very small; in the worst case, it was only about 8%. Figure 4-1(a) shows how the

performance varied with the size of the client cache.

4.3.1.1. Server Load

One of the most beneficial effects of client caching is its reduction in the load

placed on server CPUs. Figure 4-2 shows the server CPU utilization with and without

client caching. In general, a diskless client without a client cache utilized about 5-27%

of the server’s CPU. With client caching, the server utilization dropped by a factor of

1.5 or more, to 1.5-12%.

59

ii
I/O (Kbytes/sec)iiiiiiiiiiiiiiiiProgram Description
Read Writeii

Andrew 58.0 36.5Copy a directory
hierarchy con-
taining 70 files
and 200 Kbytes
of data; examine
the status of
every file in the
new subtree; read
every byte of the
files; compile
and link the files.
Developed by M.
Satyanarayanan
for benchmark-
ing the Andrew
file system; see
[How88] for de-
tails.ii

Vm-make 42.3 25.9Use the ‘‘make’’
program to
recompile the
Sprite virtual
memory system:
14 source files,
12600 lines of C
source code.ii

Sort 46.4 89.9Sort a 1-Mbyte
file.ii

Diff 452.2 4.3Compare 2 ident-
ical 1-Mbyte
files.ii

Ditroff 7.0 10.4Format a paper
which contains
both figures and
tables. The input
file contains 56
Kbytes of data.iic

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 4-3. Macro-benchmarks. The I/O columns give the average rates at which file
data were read and written by the benchmark when run on Sun-3’s with local disks and
warm caches; they measure the benchmark’s I/O intensity.

60

ii
Local Disk, Diskless, Diskless,
with Cache Server Cache Only Client & Server CachesiiBenchmark

Cold Warm Cold Warm Cold Warmii
265 255 321 307 288 275

Andrew
104% 100% 126% 120% 113% 108%ii
284 277 337 330 305 296

Vm-make
103% 100% 122% 119% 110% 107%ii

64 60 75 71 65 59
Sort

107% 100% 125% 118% 108% 98%ii
21 4.6 25 8.5 25 4.5

Diff
457% 100% 543% 185% 543% 98%ii
128 125 133 131 128 125

Ditroff
102% 100% 106% 105% 102% 100%iicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 4-4. Execution times with and without local disks and caching, measured on
Sun-3’s. The top number for each run is total elapsed time in seconds. The bottom
number is normalized relative to the warm-start time with a local disk. ‘‘Cold’’ means
that all caches, both on server and client, were empty at the beginning of the run.
‘‘Warm’’ means that the program was run once to load the caches, then timed on a
second run. In the ‘‘Diskless, Server Cache Only’’ case, the client cache was disabled
but the server cache was still enabled. In all other cases, caches were enabled on all
machines. All caches were allowed to vary in size using the VM-FS negotiation
scheme described in Chapter 6.

61

(a)

0 1 2 3 4
0%

5%

10%

15%

20%

25%

Megabytes of Cache

P
e
r
c
e
n
t

S
l
o
w
d
o
w
n

Ditroff

Sort

Andrew

Vm-make

Ditroff

Sort

Andrew

Vm-make

d
n
o
c
e
s
/
s
e
t
y
b
K

Megabytes of Cache

90

80

70

60

50

40

30

20

10

0
43210

(b)

Figure 4-1. Client degradation and network traffic (diskless Sun-3’s with client
caches, warm start) as a function of maximum client cache size. For each point, the
maximum size of the client cache was limited to a particular value. The ‘‘degradation’’
shown in (a) is relative to the time required to execute the benchmark with a local disk
and a 4-Mbyte warm cache. The diff benchmark did not fit on graph (a); for all cache
sizes less than 2 Mbytes it has a degradation of 85% and for all larger cache sizes it has
no degradation. The network traffic shown in (b) includes bytes transmitted in packet
headers and control packets, as well as file data. The diff benchmark did not fit on
graph (b) either; for all cache sizes less than 2 Mbytes it has an I/O rate of 260
Kbytes/second and for all larger cache sizes it has an I/O rate of only 1.3
Kbytes/second.

62

Diff Andrew Sort Vm-make Ditroff
0%

5%

10%

15%

20%

25%

30%

S
e
r
v
e
r

U
t
i
l
i
z
a
t
i
o
n

No client cache, cold

No client cache, warm

Client cache, cold

Client cache warm

Figure 4-2. Client caching reduces server loading by at least a factor of 1.5-3 (meas-
ured on Sun-3’s with variable-size client caches).

4.3.1.2. Network Utilization

In their analysis of diskless file access, based on Sun-2 workstations, Lazowska et

al. concluded that network loading was not yet a major factor in network file systems

[LZC86]. However, as CPU speeds increase, the network bandwidth is becoming more

and more of an issue. Figure 4-1(b) plots network traffic as a function of cache size for

the benchmarks running on Sun-3’s. Without client caching the benchmarks averaged

7.8% utilization of the 10-Mbit/second Ethernet. The most intensive application, diff,

used 20% of the network bandwidth for a single client; the other 4 benchmarks aver-

aged 4.65% of the 10-Mbit/second Ethernet. Machines at least five times faster than

Sun-3’s are already available (e.g., Sun-4 workstations); a single one of these machines

63

would utilize 25-100% of the Ethernet bandwidth running the benchmarks without

client caching. Without client caches, application performance may become limited by

network transmission delays, and the number of workstations on a single Ethernet may

be limited by the bandwidth available on the network.

Fortunately, Figure 4-1(b) shows that client caching reduces network utilization by

a factor of 4-10, to an average of about 0.66% for the benchmarks. The most I/O-

intensive benchmark, Sort uses only 2.6% of the ethernet bandwidth. This suggests that

10-Mbit Ethernets will be adequate for the new 10-MIPS generation of CPUs, and

perhaps one more generation to follow. After that, higher-performance networks will

become essential.

Ricardo Gusella in an analysis of diskless workstation Ethernet traffic also noticed

that Ethernets are becoming heavily loaded with the introduction of faster machines

[Gus87]. He measured the traffic on a 10-Mbit Ethernet over a 24 hour period. He

determined that two Sun-3 workstations (a Sun-3/180 server and a Sun-3/50 client each

with 4 Mbytes of memory) running UNIX with Sun’s Network File System (NFS)

[San85] can utilize over 20% of the Ethernet. Since the workstations that Gusella

measured had smaller memories than the Sprite workstations and NFS does not utilize

file data caches as effectively as Sprite, I would not expect Sprite to exhibit the same

loads that were measured by Gusella. However, Gusella’s measurements are another

indication that higher-performance networks will be necessary in the near future.

64

4.3.1.3. Disk Utilization

Figure 4-3 shows the disk utilizations of the benchmarks. For most of the bench-

marks, the disk utilization with a warm cache is less than 6% with or without client

caching. This shows that, for most of the benchmarks, a cache on the server is able to

reduce the disk traffic to reasonable levels.

Sort is the one benchmark that has a fairly high disk utilization without client

caching; with client caching the disk utilization is cut in half. This demonstrates the

advantage of the 30-second delayed write policy. The Sort benchmark completes in

n
o
i
t
a
z
i
l
i
t
U

k
s
i
D

70%

60%

50%

40%

30%

20%

10%

0%
DitroffVm-makeSortAndrewDiff

No client cache, cold

No client cache, warm

Client cache, cold

Client cache warm

Figure 4-3. Client caching reduces disk utilization by up to a factor of 2 (measured on
Sun-3’s with variable-size client caches).

65

around 60 seconds. When client caching is used, all writes to disk will be delayed by

30 seconds on the client and 30 seconds on the server. Thus, only the final result will

end up getting written to disk. Without client caching modified data will only be

delayed by 30 seconds; any intermediate files that live longer than 30 seconds will get

written through to disk. If the server were changed to use a 60 second delayed-write

policy, then many of the extra disk writes without client caching would be eliminated.

With warm caches the disk utilization of these benchmarks is up to a factor of two

lower than the CPU utilization. The disk utilization would be even lower if Sprite did a

better job of utilizing the disk bandwidth; currently only one block can be transferred

per disk revolution. Therefore, currently the CPU should saturate before the disk.

However, as CPUs get much faster and disks do not, the disk may become the

bottleneck that will limit system scalability.

4.3.1.4. Contention

In order to measure the effects of loading on the performance of the Sprite file sys-

tem, I ran several versions of the most server-intensive benchmark, Andrew, simultane-

ously on different clients. Each client used a different copy of the input and output

files, so there was no cache consistency overhead. I ran each contention benchmark

three times for each data point measured and took the average of the three runs.

Table 4-5 and Figure 4-4 show the effects of contention on the client speed, on the

server’s CPU, and on the network. Without client caches, there was significant perfor-

mance degradation when more than a few clients were active at once. With five clients

and no client caching, the clients were executing 80% more slowly, the server was

66

ii
Andrew Contention Resultsii

Elapsed Time Network Mbytes Server Util Disk I/Os Disk UtilNumber iii

of No With No With No With No With No With
Client Client Client Client Client Client Client Client Client ClientClients
Cache Cache Cache Cache Cache Cache Cache Cache Cache Cacheii
307 275 23.8 4.3 18.0% 12.1% 863 647 6.0% 5.0%1
6.1 0.0 0.0 0.0 0.1 0.0 359.8 1.7 1.7 0.0ii
324 275 47.7 8.6 34.6% 21.8% 1397 1141 12.0% 11.3%2
2.6 0.4 0.6 0.0 0.1 0.1 190.0 2.1 1.7 0.6ii
353 286 71.7 12.9 48.1% 31.2% 2401 1644 19.3% 15.3%3
3.5 1.7 0.6 0.0 0.5 0.1 192.5 12.5 0.6 0.6ii
450 321 120.3 21.6 65.7% 45.0% 4369 2742 30.2% 23.3%5
2.3 9.7 0.5 0.0 0.1 0.4 92.6 28.5 0.4 1.2ii
519 372 168.8 30.2 74.3% 58.2% 6146 3843 38.0% 30.7%7
22.2 8.3 0.6 0.0 2.3 0.3 407.6 48.4 2.0 0.6ii
753 456 245.9 44.0 83.3% 70.8% 9935 5659 50.7% 42.7%10
3.3 15.3 0.6 0.6 0.3 0.1 64.1 234.9 0.6 2.1iicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 4-5. Andrew contention results. Each row contains two lines of data. The first
line contains the results of running the benchmarks and the second line contains the
standard deviations. Each row of the table is for a different number of clients running
the Andrew benchmark at the same time against a single server. Each of the five
columns of results are divided into the result when the benchmark was run without
client caching and the result with client caching. The five columns show, in the fol-
lowing order, average elapsed time to execute the benchmark in seconds, network
bytes transferred in megabytes, server utilization, number of disk reads and writes and
disk utilization.

nearly 70% utilized, the network was over 20% utilized, and the disk was 30% utilized.

With client caching and five active clients, each ran at a speed within 25% of what it

could have achieved with a local disk; server utilization in this situation was about

45%, network utilization was only 5% and disk utilization was 23%. Basically, client

caching allows servers to support twice as many clients and networks to support at least

4 times as many clients.

The measurements of Figure 4-4 suggest that client caches allow a single Sun-3

server to support 5-7 Sun-3 clients simultaneously running the Andrew benchmark.

However, typical users spend only a small fraction of their time running such intensive

programs. I estimate that one instance of the Andrew benchmark corresponds to about

67

(c)

(a)

0 1 2 3 4 5 6 7 8 9 10
0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%

Number of Clients

C
l
i
e
n
t

D
e
g
r
a
d
a
t
i
o
n

No Client Caches

With Client Caches

0 1 2 3 4 5 6 7 8 9 10
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Number of Clients

S
e
r
v
e
r

U
t
i
l
i
z
a
t
i
o
n

No Client Caches

With Client Caches

(b)

With Client Caches

No Client Caches

n
o
i
t
a
z
i
l
i
t
U

k
s
i
D

Number of Clients

55%

50%

45%

40%

35%

30%

25%

20%

15%

10%

5%

0%
109876543210

(d)

With Client Caches

No Client Caches

n
o
i
t
a
z
i
l
i
t
U

k
r
o
w
t
e
N

Number of Clients

30%

25%

20%

15%

10%

5%

0%
109876543210

Figure 4-4. Effect of multiple diskless clients running the Andrew benchmark simul-
taneously on different files in a Sun-3 configuration with variable-size client caches.
(a) shows additional time required by each diskless client to complete the benchmark,
relative to a single client running with local disk. (b) shows server CPU utilization.
(c) shows percent network utilization. (d) shows disk utilization.

68

5-20 active users, so that one Sun-3 Sprite file server should be able to support at least

30 Sun-3 users. This estimate is based on the study of UNIX done by Ousterhout et al.

[Ous85], which reported average file I/O rates per active user of 0.5-1.8 Kbytes/second.

I estimate that the average total I/O for an active Sun-3 workstation user will be about

8-10 times higher than this, or about 4-18 Kbytes/second, because Ousterhout’s study

did not include paging traffic and was based on slower machines used in a timesharing

mode (I estimate that each of these factors accounts for about a factor of two). Since

the average I/O rate for the Andrew benchmark was 90 Kbytes/second, it corresponds to

about 5-20 users. This estimate is consistent with independent estimates made by

Howard et al., who estimated that one instance of the Andrew benchmark corresponds

to five average users [How88], and by Lazowska et al., who estimated about 4

Kbytes/second of I/O per user on slower Sun-2 workstations [LZC86].

The server capacity should not change much with increasing CPU speeds, as long

as both client and server CPU speeds increase at about the same rate. In a system with

servers that are more powerful than clients, the server capacity should be even higher

than this.

4.4. Advantage of Local Name Caching

Although I am generally satisfied with Sprite’s performance and scalability, I have

estimated how much improvement would be possible if we implemented client-level

name caching with an Andrew-like callback mechanism. Table 4-6 contains simple

upper-bound estimates. The table suggests that client-visible performance would only

improve by a few percent (even now, clients run almost as fast with remote disks as

69

with local ones), but server utilization and network utilization would be reduced by as

much as a factor of 2. This could potentially allow a single server or network to sup-

port up to twice the number of clients that the current implementation supports. Thus,

in terms of CPU utilization, client name caching would provide about the same

improvement as client data caching.

My estimate for improvement in Sprite is much smaller than the measured

improvement in Andrew when they switched to callback. I suspect that this is because

the Andrew servers are implemented as user-level processes, which made the system

more portable, but also made remote operations much more expensive than in Sprite’s

kernel-level implementation. If the Andrew servers had been implemented in the ker-

nel, I suspect that there would have been less motivation to switch to a callback

approach.

iii
Degradation Server Utilization Network Utilizationiii

Handle Handle HandleBenchmark
Original

Locally
Original

Locally
Original

Locallyii
Andrew 7.8% 0.0% 12.1% 6.3% 1.24% 0.67%iii

Vm-make 6.7% 0.5% 6.7% 4.7% 0.76% 0.35%iiicc
c
c
c
c
c

cc
c
c
c
c
c

c
c
c
c
c

cc
c
c
c
c
c

c
c
c
c
c

cc
c
c
c
c
c

c
c
c
c
c

cc
c
c
c
c
c

Table 4-6. Estimated improvements possible from client-level name caching and
server callback. The estimates were made by counting invocations of Open and Get
Attributes operations in the benchmarks and recalculating degradations and utilizations
under the assumption that all of these operations could be executed by clients without
any network traffic or server involvement.

70

4.5. Comparison to Other Systems

Figure 4-5 compares Sprite to the Andrew and NFS filesystems using the Andrew

benchmark. The measurements for the NFS and Andrew file systems were obtained

from [How88]. Unfortunately, the measurements in [How88] were taken using Sun-

3/50 clients, whereas I had only Sun-3/75 clients available for the Sprite measurements;

the Sun-3/75 is about 30% faster than the Sun-3/50. In order to make the systems com-

parable, I re-normalized the Sprite numbers for Sun-3/50 clients: the Sprite elapsed

times from Table 4-5 were multiplied by 1.3, and the server utilizations from Table 4-5

were divided by 1.3 (the servers were the same for the Sprite measurements as for the

Andrew and NFS measurements; slowing down the Sprite clients would cause the

server to do the same amount of work over a longer time period, for lower average utili-

zation). Another difference between my measurements and the ones in [How88] is that

the NFS and Andrew measurements were made using local disks for program binaries,

paging, and temporary files. For Sprite, all of this information was accessed remotely

from the server.

Figure 4-5 shows that for a single client Sprite is about 30% faster than NFS and

about 35% faster than Andrew. The systems are sufficiently different that it is hard to

pinpoint a single reason for Sprite’s better performance; however, I suspect that

Sprite’s high-performance kernel-to-kernel RPC mechanism (vs. more general-purpose

but slower mechanisms used in NFS and Andrew), Sprite’s delayed writes, and Sprite’s

kernel implementation (vs. Andrew’s user-level implementation) are major factors. As

the number of concurrent clients increased, the NFS server quickly saturated. The

Andrew system showed the greatest scalability: each client accounted for only about

71

(b)(a)

e
m
i
T

d
e
s
p
a
l
E

Number of Clients

900

800

700

600

500

400

300

200

100

0
109876543210

n
o
i
t
a
z
i
l
i
t
U

r
e
v
r
e
S

Number of Clients

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%
109876543210

NFS

Andrew

Sprite

NFS

Sprite

Andrew

Figure 4-5. Performance of the Andrew benchmark on three different file systems;
Sprite, Andrew, and NFS. (a) shows the absolute running time of the benchmark as a
function of the number of clients executing the benchmark simultaneously, and (b)
shows the server CPU utilization as a function of number of clients. The Andrew and
NFS numbers were taken from [How88] and are based Sun-3/50 clients. The Sprite
numbers were taken from Table 4-5 and re-normalized for Sun-3/50 clients.

2.4% server CPU utilization, vs. 7.5% in Sprite and 20% in NFS. I attribute Andrew’s

low server CPU utilization to its use of callbacks. Figure 4-5 reinforces my claim that a

Sprite file server should be able to support at least 30 clients: our experience with NFS

is that a single server can support 10-15 clients, and Sprite’s server utilization is only

one-third that of NFS.

4.6. Summary

In this chapter I presented detailed measurements of the performance of client

caching. On average, client caching resulted in a speedup of about 10-20% for pro-

grams running on diskless workstations, relative to diskless workstations without client

72

caches. With client caching enabled, diskless workstations completed the benchmarks

only 0-8% more slowly than workstations with disks. Client caches reduced the server

utilization from about 5-27% per active client to about 1-12% per active client. Since

normal users are rarely active, my measurements suggest that a single server should be

able to support at least 30 clients.

In addition to measuring the absolute performance of Sprite, I also compared the

performance of the Sprite file system, the Andrew file system [Sat85], and Sun’s Net-

work File System [San85] for a particular file-intensive benchmark. I showed that

Sprite completes the benchmark 30-35% faster than the other systems. Sprite’s server

utilization was one-third of NFS’s utilization but three times Andrew’s utilization.

73

CHAPTER 5

Writing Policies

5.1. Introduction

The policy that is used to handle data after it has been written impacts perfor-

mance, reliability and the cache consistency mechanism; the writing policies on both

the server and the client are important. In the implementation of Sprite that I described

in the previous chapters the 30-second delayed write policy was used on both clients

and servers. This allows Sprite to attain high performance, but it potentially reduces its

reliability and complicates its cache consistency mechanism. This chapter focuses on

the performance-reliability tradeoff: are there writing policies that provide both high

performance and high reliability?

All of the previous work on the impact of the writing policy has been done by

using traces of UNIX timesharing systems. In addition, there have been no analyses of

the trade-offs between the client writing policy and the server policy; previous work has

concentrated on analyzing either the server policy or the client writing policy, but not

both. In this chapter, I will explore the impact of the writing policy by measuring the

results of running benchmarks against the Sprite file system. This will include an

analysis of numerous writing policies on clients and several policies for the server. The

measurements will answer the following questions:

74

g What is the impact of the client writing policy on client performance and the

amount of network traffic?

g What effect does the server writing policy have on the amount of disk traffic, on

the utilization of the server’s CPU, and on the performance of client workstations?

g Does the impact of the server policy differ depending on which policy the client

uses?

g Does the impact of the client policy differ depending on which policy the server

uses?

The client writing policies that I will analyze are shown in Table 5-1. These

include the policies used by all file systems I know, and they cover the whole range of

the performance-reliability tradeoff: from write-through to delayed-write. In addition,

policies that treat temporary files specially are included, in order to determine whether

delaying temporary files will allow higher reliability for most files while still providing

good performance.

The server policies are shown in Table 5-2. Delay-30 and write-through (WT) are

the ones that are most commonly implemented on currently existing file servers. The

other two policies, as-soon-as-possible (ASAP) and last-dirty-block (LDB), have been

included as alternatives that provide higher reliability than delay-30 but with higher

performance than WT. In particular, with the cooperation of clients, the LDB policy

can provide nearly the same reliability as WT. If clients do not remove any blocks

from their cache until the last dirty block for a file has been written back to the server,

then the LDB and WT policies will provide nearly the same server reliability.

75

iii
Policy Descriptionii

Write-through (WT) A write call does not return
until the data has been writ-
ten to the server’s cache.iii

Write-back-on-close (WBOC) Write calls return as soon as
data has been written to the
client’s cache, but a close
call will not return until all
of the modified data has been
written to the server’s cache.iii

As-soon-as-possible (ASAP) Write calls return as soon as
data has been written to the
client’s cache but the data is
scheduled to be written back
to the server’s cache when
either a block is full or the
file is closed.iii

WBOC + ASAP Combination of write-back-
on-close and as-soon-as-
possible.iii

Full Delay (full-delay) Write calls return as soon as
data has been written to the
client’s cache and blocks are
not written back unless they
are ejected from the cache.iii

30 Second Delay (delay-30) Like full-delay except that
every 5 seconds the cache is
scanned and dirty blocks that
have not been modified in at
least 30 seconds are written
back.iii

WT + delay /tmp files (WT-TMP) Use full-delay policy for all
files in the /tmp directory
and write-through for all oth-
er files.iii

WBOC + TMP (WBOC-TMP) Use full delay policy for all
files in the /tmp directory
and WBOC for all other
files.iii

ASAP + TMP (ASAP-TMP) Use full delay policy for all
files in the /tmp directory
and ASAP for all other files.iiicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

76

Table 5-1. Client writing policies. Each of these policies represents the action that the
file system takes when an application program issues a write system call or a close
call.

77

ii
Policy Descriptionii

30 Second Delay (delay-30) The client RPC returns im-
mediately after the data has
been loaded into the cache.
Data blocks, indirect blocks
and file descriptors are not
written back until either they
are ejected from the cache or
they are dirty and they have
not been modified for at least
30 seconds.ii

Write-through (WT) The client RPC does not re-
turn until the data, any
modified indirect blocks, and
the file descriptor have been
written to the server’s disk.ii

As-soon-as-possible (ASAP) The client RPC returns im-
mediately after the data has
been loaded into the cache
but the data, the file descrip-
tor and dirty indirect blocks
are all scheduled to be writ-
ten to disk as soon as possi-
ble.ii

Last Dirty Block (LDB) All client writes return im-
mediately except for the one
that contains the last dirty
block for the file. The write
that contains the file’s last
dirty block will not return
until all dirty data blocks,
dirty indirect blocks and the
file descriptor have been
written to disk. This policy
is used in conjunction with
the delay-30 policy on the
server.iicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 5-2. Server writing policies. Each of these policies represents the action that the
file system takes when a client delivers dirty data to the server via a remote procedure
call (RPC).

Table 5-3 describes the benchmarks that I used to measure the impact of the writ-

ing policy. These benchmarks were chosen because, of all of the benchmarks given in

78

the previous chapter, they are the only ones that generate a large amount of write traffic.

All of the measurements were made on configurations of Sun-3 workstations. The

client was a Sun-3/75 with 16 Mbytes of memory and the server was a Sun-3/180 with

16 Mbytes of memory and 400-Mbyte Fujitsu Eagle disk. Both the client and server

caches were 8 Mbytes, which were large enough to hold the entire input and output of

each benchmark; thus, blocks were never written back during the execution of the

benchmark unless the writing policy explicitly forced the block to be written back.

However, both the client and server caches were written back at the end of each bench-

mark. This was done to capture the number of useful bytes of data generated by the

benchmarks, but was not included in the measured elapsed time.

The rest of this chapter is organized as follows: Section 5.2 measures the impact of

the client writing policy on network load; Sections 5.3, 5.4, and 5.5 analyze the impact

of the server and client writing policies on disk traffic, server utilization and client per-

formance, respectively.

5.2. Network Load

The load placed on the network by clients depends only on the client writing pol-

icy; the policy used on the server does not matter. Table 5-4 gives the number of

Kbytes placed on the network by each of the three benchmarks for each of the 9 client

writing policies. As expected, the full-delay policy gives the lowest network load for

all benchmarks. Figure 5-1 shows the relative differences between the full-delay policy

and the other policies.

79

ii
I/O (Kbytes/sec)iiiiiiiiiiiiiiiiProgram Description
Read Writeii

Andrew 58.0 36.5Copy a directory
hierarchy con-
taining 70 files
and 200 Kbytes
of data; examine
the status of
every file in the
new subtree; read
every byte of the
files; compile
and link the files.
Developed by M.
Satyanarayanan
for benchmark-
ing the Andrew
file system; see
[How88] for de-
tails.ii

Vm-make 42.3 25.9Use the ‘‘make’’
program to
recompile the
Sprite virtual
memory system:
15 source files,
11,250 lines of C
source code.ii

Sort 46.4 89.9Sort a 1-Mbyte
file.iicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 5-3. Benchmarks. The I/O columns give the average rates at which file data
were read and written by the benchmark when run on Sun-3’s with no disks and warm
caches and the highest performance writing policy; they measure the benchmark’s I/O
intensity.

80

ii
Network Kbytes vs. Client Policyii

Andrew Vm-make Sort
Client ii

Policy Read Write Total Read Write Total Read Write Totalii
1413 4853 6266 965 3676 4641 114 2989 3103

WT
1.07 1.62 1.45 1.06 1.87 1.61 1.46 2.63 2.56ii
1348 4783 6131 935 3652 4588 114 2989 3103

WBOC
1.02 1.60 1.42 1.03 1.86 1.60 1.46 2.63 2.56ii
1360 4933 6293 951 3831 4781 114 2989 3103

ASAP
1.03 1.65 1.46 1.05 1.95 1.66 1.46 2.63 2.56ii
1361 4960 6321 951 3837 4788 114 2989 3103

WBOC-ASAP
1.03 1.66 1.46 1.05 1.95 1.66 1.46 2.63 2.56ii
1323 3063 4386 909 1976 2885 88 1637 1725

delay-30
1.00 1.02 1.02 1.00 1.00 1.00 1.12 1.44 1.42ii
1321 2994 4315 908 1968 2876 78 1135 1213

full-delay
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00ii
1387 3516 4903 938 2018 2956 77 1133 1211

WT-TMP
1.05 1.17 1.14 1.03 1.03 1.03 0.99 1.00 1.00ii
1330 3457 4787 908 1989 2897 78 1133 1211

WBOC-TMP
1.01 1.15 1.11 1.00 1.01 1.01 0.99 1.00 1.00ii
1342 3621 4962 924 2174 3098 77 1133 1210

ASAP-TMP
1.02 1.21 1.15 1.02 1.10 1.08 0.99 1.00 1.00iicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 5-4. Network Kbytes vs. Client Policy. This table shows the amount of net-
work traffic for each of the three benchmarks with each of the different client writing
policies. The top line for each policy is the raw number of Kbytes transferred. The
bottom line is the bytes transferred for the policy divided by the number of bytes
transferred with the full-delay policy. Note that the reason why there are bytes
transferred with the full-delay policy is that the client cache is written back at the end
of each benchmark.

Figure 5-1 shows that all four of the non-delay policies require significantly more

bytes transferred (between 40 and 150 percent) than the full-delay policy. Which non-

delayed-write policy is used does not matter because each of the 4 policies transfers

approximately the same number of bytes. Since the ASAP, WBOC and WBOC-ASAP

policies only transfer file system blocks after they have either filled with data or the file

is closed, these policies should transfer the same number of bytes. However, the WT

policy sends data to the server as soon as it is written into the client’s cache; if the

benchmarks write data in pieces smaller than the file system block size, the WT policy

will require more network transfers than the other policies. Fortunately, the packet

81

header overhead per network write is very small (less than 80 bytes). Since the bench-

marks rarely write less than 1024 bytes to the cache at a time, the packet overhead is

less than 8 percent. Thus, the variations in network bytes transferred between the 4

non-delayed-write policies should be very small.

It is interesting to note that the ASAP and WBOC-ASAP client policies actually

transfer more bytes than either WBOC or WT for both the Andrew and Vm-make

benchmarks. I believe that this may be because of packet retransmissions by the RPC

system. As I explained in Chapter 4, there are several block cleaners in the kernel, but

there is only one block cleaner writing back a file at any one time. Since each of the

ASAP TMP TMP TMP
WT WBOC ASAP WBOC- delay-30 WT- WBOC- ASAP-

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

N
e
t
w
o
r
k

B
y
t
e

R
a
t
i
o

Andrew Vm-make Sort

Figure 5-1. Ratio of number of network bytes transferred with each of the client poli-
cies to the number of bytes transferred with a full-delay policy. A ratio of 1.0
corresponds to the given client policy transferring the same number of bytes as the
full-delay policy.

82

benchmarks only has one process executing at a time, they can only be writing and

closing one file at a time. This means that, when the WT and WBOC policies are used,

there can only be one file being written to the server at any given time. The ASAP poli-

cies on the other hand do asynchronous write-backs and can therefore have multiple

files being written back at once. For this reason the ASAP policies will be interacting

more intensely with the server; this may result in contention on the server, which may

cause the RPC system to time-out and retransmit packets.

The delay-30 policy eliminates nearly all of the extra network writes caused by the

4 non-delayed-write policies. For the Andrew and Vm-make benchmarks, the delay-30

policy requires only 2% more bytes transferred than full-delay; this implies that nearly

all of the temporary files that were used during these two benchmarks were deleted

within 30 seconds of their creation. For the Sort benchmark the delay-30 policy

requires 40% more bytes transferred than full-delay, because some of the temporary

files do in fact live longer than 30 seconds. However, delay-30 still only transfers 2/3

of the bytes transferred by the 4 non-delayed-write policies. Thus, the delay-30 policy

gives higher reliability than full-delay while requiring little overhead in terms of net-

work bytes transferred.

The use of a full-delay policy on temporary files also is very effective in eliminat-

ing the extra network writes caused by the 4 non-delayed-write policies. This is espe-

cially true of the Sort benchmark, which writes all of its data to temporary files except

for the final result; delaying temporary files eliminates all network transfers except for

the ones required to write back the final result.

83

5.3. Disk Traffic

The amount of traffic to disk required to execute client programs limits the number

of clients that can be supported by a single disk. With large caches on client and server

workstations, the amount of data that is read from disks should be small; most of the

traffic to disks will be data that is written. This can be seen by looking at the high ratio

of network bytes written to network bytes read in Table 5-4. The writing policy will

therefore determine the load that is placed on each disk, and hence the number of

clients that a disk can support.

There are three types of file blocks that a server must write to disk: data blocks,

indirect blocks and file descriptor blocks. As explained in Section 3.4, the data blocks

contain the actual data that is written by the client to the server’s cache, and the file

descriptor and indirect blocks describe where the data blocks reside on disk. In order to

make the write of a new data block reliable, the data block, the file descriptor block,

and possibly an indirect block need to be written to disk; an indirect block only has to

be written if the data block is not one of the first 10 blocks in the file. If a client is writ-

ing to a file block that has already been reliably written to disk, then it is not necessary

to write the descriptor and indirect blocks through to disk.

The server policy that requires the smallest amount of disk traffic is delay-30 (see

Table 5-5). With this policy, not only are data blocks only written back after they have

been in the cache for 30 or more seconds, but the same policy applies to directories and

indirect blocks as well; file descriptor block write-backs are also delayed, but only for

5 seconds. Since each file descriptor block can hold descriptors for 32 files, delaying

84

ii
Disk Traffic: 30-Second Delay on Serverii

Andrew Vm-make Sortii
Disk Writes Disk Writes Disk Writesiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiii

Data Total Data Total Data Total
Client
Policy Disk

Util Ind/
Desc

Disk
Util Ind/

Desc

Disk
Util Ind/

Descii
6% 498 154 652 3% 261 186 447 16% 490 37 528WT
1.00 1.03 0.89 0.99 1.00 1.04 1.09 1.06 2.00 1.74 1.37 1.71ii
5% 483 149 632 3% 249 176 425 13% 405 34 439WBOC
0.83 1.00 0.86 0.96 1.00 1.00 1.04 1.01 1.63 1.44 1.26 1.42ii
6% 496 154 650 3% 250 176 426 14% 420 34 454ASAP
1.00 1.02 0.89 0.99 1.00 1.00 1.04 1.01 1.75 1.49 1.26 1.47ii

WBOC- 6% 499 145 644 3% 249 177 426 14% 420 33 454
ASAP 1.00 1.03 0.84 0.98 1.00 1.00 1.04 1.01 1.75 1.49 1.22 1.47ii

6% 484 156 641 3% 252 171 423 8% 282 27 309delay-30
1.00 1.00 0.90 0.98 1.00 1.01 1.01 1.01 1.00 1.00 1.00 1.00ii

full- 6% 484 173 657 3% 250 170 420 8% 282 27 309
delay 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00ii
WT- 6% 485 152 637 3% 251 180 431 8% 282 28 310
TMP 1.00 1.00 0.88 0.97 1.00 1.00 1.06 1.03 1.00 1.00 1.04 1.00ii

WBOC- 5% 482 149 631 3% 249 177 426 8% 282 27 309
TMP 0.83 1.00 0.86 0.96 1.00 1.00 1.04 1.01 1.00 1.00 1.00 1.00ii

ASAP- 5% 483 145 628 3% 249 177 427 9% 282 27 309
TMP 0.83 1.00 0.84 0.96 1.00 1.00 1.04 1.02 1.13 1.00 1.00 1.00iicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 5-5. The amount of disk traffic with the delay-30 policy on the server. The top
line for each client policy is the disk utilization and the number of disk writes for the
three benchmarks. The bottom line is the top line divided by the disk utilization or
number of disk writes with the full-delay policy on the client and the delay-30 policy
on the server. Note that the numbers in the bottom line should never be lower than 1.0
since the full-delay policy should give the smallest number of disk writes. However,
because of the small number of disk transfers and slight variabilities

the write of descriptor blocks to disk may allow descriptor information for several files

to be written to disk at once. This can be very useful because, as explained in Section

3.4, Sprite attempts to put file descriptor information for files that reside in the same

directory in the same or nearby file descriptor blocks; thus, the file descriptors for many

files within a given directory can be written to disk with only one disk write.

Table 5-5 shows that, with the delay-30 server policy, the client policy has very

little impact on the amount of disk traffic for either the Andrew or Vm-make bench-

marks. For these two benchmarks, although more reliable client policies require more

85

iii
Disk Traffic: Write-Through on Serveriii

Andrew Vm-make Sortiii
Disk Writes Disk Writes Disk Writesiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiii

Data Total Data Total Data Total
Client
Policy Disk

Util Ind/
Desc

Disk
Util Ind/

Desc

Disk
Util Ind/

Descii
33% 1828 2682 4511 20% 1027 1596 2623 45% 745 1356 2101WT
5.50 3.78 15.50 6.87 6.67 4.11 9.39 6.25 5.63 2.64 50.22 6.80iii
26% 1171 2016 3187 17% 820 1385 2205 45% 745 1354 2099WBOC
4.33 2.42 11.65 4.85 5.67 3.28 8.15 5.25 5.63 2.64 50.15 6.79iii
29% 1153 1941 3094 19% 824 1386 2211 79% 745 1339 2084ASAP
4.83 2.38 11.22 4.71 6.33 3.30 8.15 5.26 9.88 2.64 49.59 6.74iii

WBOC- 28% 1196 2039 3235 19% 842 1405 2247 64% 745 1352 2097
ASAP 4.67 2.47 11.79 4.92 6.33 3.37 8.26 5.35 8.00 2.64 50.07 6.79iii

18% 734 1399 2133 10% 395 801 1196 39% 507 871 1378delay-30
3.00 1.52 8.09 3.25 3.33 1.58 4.71 2.85 4.88 1.80 32.26 4.46iii

full- 17% 718 1489 2207 10% 384 779 1163 27% 303 572 875
delay 2.83 1.48 8.61 3.36 3.33 1.54 4.58 2.77 3.38 1.07 21.19 2.83iii
WT- 27% 1383 2134 3517 14% 596 1026 1623 27% 303 572 875
TMP 4.50 2.86 12.34 5.35 4.67 2.38 6.04 3.86 3.38 1.07 21.19 2.83iii

WBOC- 20% 829 1573 2402 10% 390 806 1196 27% 303 573 876
TMP 3.33 1.71 9.09 3.66 3.33 1.56 4.74 2.85 3.38 1.07 21.22 2.83iii

ASAP- 21% 841 1563 2404 11% 412 828 1240 34% 303 572 875
TMP 3.50 1.74 9.03 3.66 3.67 1.65 4.87 2.95 4.25 1.07 21.19 2.83iiicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 5-6. The amount of disk traffic with the write-through policy on the server. The
top line for each client policy is the disk utilization and the number of disk writes for
the three benchmarks. The bottom line is the top line divided by the disk utilization or
number of disk writes with the full-delay policy on the client and the delay-30 policy
on the server.

server transactions, the server delay-30 policy is able to eliminate many unnecessary

disk operations; in the worst case, the disk is only 6% utilized.

For the write-intensive Sort benchmark, the client policy does have an impact on

the amount of disk traffic. When the client uses any of the four non-delayed-write poli-

cies the disk writes increase by 42-71% over when full-delay is used. In addition, the

disk is twice as utilized.

It is interesting to note that with the Andrew benchmark the number of indirect

and file descriptor disk writes are highest when the client uses a full-delay policy. This

increase is actually totally due to extra descriptor writes and only occurred on two of

the three runs of the benchmark. This increase in descriptor traffic is probably due to

86

variabilities in when the daemon that cleans the cache ran on the server. Dirty descrip-

tor blocks get written to disk the next time that the daemon runs. Thus if the daemon

ran while the client was writing back all of its data blocks at the end of the benchmark

then the number of descriptor disk writes would be higher than if daemon did not run at

all.

When the server uses write-through instead of delay-30, the amount of disk traffic

goes up tremendously (see Table 5-6 and Figure 5-2); the number of disk writes

increases by up to a factor of 7 and the disk is up to 79% utilized. With write-through,

whenever the server receives a write request for a new block from a client, it writes the

data, indirect and file descriptor blocks through to disk. As a result, each client write

ASAP TMP TMP TMP

SortVm-makeAndrew

o
i
t
a
R

c
i
f
f
a
r
T

k
s
i
D

7.0

6.0

5.0

4.0

3.0

2.0

1.0
ASAP-WBOC-WT-full-delaydelay-30WBOC-ASAPWBOCWT

Figure 5-2. Ratio of disk writes with a write-through policy on the server and the
client policies in this figure to disk writes with full-delay on the client and delay-30 on
the server.

87

operation can require up to three disk writes. In addition, when files are created, the

directory that the file is created in is also written through to disk; this will result in both

extra data writes and extra descriptor writes. The greatest increase in disk writes comes

from file descriptor and indirect block writes which increase by as much as a factor of

50; whereas with the server delay-30 policy the descriptor and indirect blocks may only

be written to disk once for an entire file, with write-through they are written to disk

once for every block.

The worst client policy in conjunction with server WT is client WT. Client WT is

the worst because it is the only policy that does not wait until either a file system block

fills up or the file is closed. As a result, it requires more server transactions and hence

more disk writes than any other policy for both the Andrew and Vm-make benchmarks.

Client WT does not require more disk transactions with Sort because Sort always writes

data in file system block size chunks.

Figure 5-2 shows that for the three benchmarks even the full-delay and delay-30

client policies cause the amount of disk traffic to triple; the main cause of this increase

is the extra file descriptor and indirect block writes. As the client uses more reliable

writing policies that require more server interactions, disk writes increase by another

factor of two. Except for the WT-TMP policy, the use of the full-delay policy with

temporary files is effective in eliminating most of the extra disk writes caused by the

more reliable policies. Both the WBOC-TMP and ASAP-TMP client policies have the

same amount of disk traffic as the full-delay policy. The WT-TMP policy is not nearly

as effective as the other temporary file policies in eliminating disk traffic for either the

Andrew or Vm-make benchmarks; this is for the same reason given above why normal

88

client write-through causes the highest number of disk writes.

The server ASAP policy potentially allows the server to eliminate many of the

data, indirect and descriptor disk writes required with write-through. With the ASAP

policy the data, descriptor and indirect block writes are scheduled to happen as soon as

possible but the client write request is allowed to complete before the disk writes do.

This has the advantage that, if a client is able to complete multiple accesses to a single

data, descriptor or indirect block before the block can be written to disk, then disk

writes can be eliminated. Table 5-7 and Figure 5-3 show that ASAP is able to eliminate

up to half of the disk writes required with write-through.

ii
Disk Traffic: ASAP on Serverii

Andrew Vm-make Sortiii
Disk Writes Disk Writes Disk Writesiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiii

Data Total Data Total Data Total
Client
Policy Disk

Util Ind/
Desc

Disk
Util Ind/

Desc

Disk
Util Ind/

Descii
23% 1002 1497 2499 17% 759 1096 1855 69% 729 1075 1804WT
3.83 2.07 8.65 3.80 5.67 3.04 6.45 4.42 8.63 2.59 39.81 5.84ii
16% 952 753 1705 11% 737 528 1266 29% 731 208 940WBOC
2.67 1.97 4.35 2.60 3.67 2.95 3.11 3.01 3.63 2.59 7.70 3.04ii
21% 988 1106 2095 16% 752 999 1752 70% 727 1014 1742ASAP
3.50 2.04 6.39 3.19 5.33 3.01 5.88 4.17 8.75 2.58 37.56 5.64ii

WBOC- 21% 988 1101 2090 16% 750 1006 1756 70% 728 1020 1748
ASAP 3.50 2.04 6.36 3.18 5.33 3.00 5.92 4.18 8.75 2.58 37.78 5.66ii

11% 608 626 1234 7% 365 430 795 19% 415 148 563delay-30
1.83 1.26 3.62 1.88 2.33 1.46 2.53 1.89 2.38 1.47 5.48 1.82ii

full- 10% 597 584 1181 7% 363 391 755 14% 301 120 422
delay 1.67 1.23 3.38 1.80 2.33 1.45 2.30 1.80 1.75 1.07 4.44 1.37ii
WT- 16% 718 1151 1870 8% 389 545 935 35% 301 539 841
TMP 2.67 1.48 6.65 2.85 2.67 1.56 3.21 2.23 4.38 1.07 19.96 2.72ii

WBOC- 12% 664 677 1342 7% 368 412 780 14% 302 114 416
TMP 2.00 1.37 3.91 2.04 2.33 1.47 2.42 1.86 1.75 1.07 4.22 1.35ii

ASAP- 14% 712 787 1499 7% 384 460 845 34% 299 507 806
TMP 2.33 1.47 4.55 2.28 2.33 1.54 2.71 2.01 4.25 1.06 18.78 2.61iicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 5-7. The amount of disk traffic with the ASAP policy on the server. The top
line for each client policy is the disk utilization and the number of disk writes for the
three benchmarks. The bottom line is the top line divided by the disk utilization or
number of disk writes with the full-delay policy on the client and the delay-30 policy
on the server.

89

ASAP TMP TMP TMP

1.0

2.0

3.0

4.0

5.0

6.0

7.0

SortVm-makeAndrew

o
i
t
a
R

c
i
f
f
a
r
T

k
s
i
D

ASAP-WBOC-WT-full-delaydelay-30WBOC-ASAPWBOCWT

Figure 5-3. Ratio of disk writes with an ASAP policy on the server and the client pol-
icies in this figure to disk writes with full-delay on the client and delay-30 on the
server.

The most dramatic reduction in disk traffic with server ASAP occurs when the

client uses one of the delay-30, full-delay, WBOC or WBOC-TMP policies. The main

reason for the reduction in disk traffic for these 4 policies is the tremendous reduction in

indirect and file descriptor block writes. Indirect and file descriptor disk traffic is

reduced because the delay policies and the WBOC policies all write many blocks of

data to the server in succession. For example, WBOC will not write any data blocks

through to the server until the file is closed. Once the file is closed the client will send

over the entire file. Since many blocks are written in succession, each file descriptor

and indirect block can be updated many times before it ends up getting written to disk.

The LDB server policy provides good reliability in the case of server crashes, yet

provides reasonably low disk traffic (see Table 5-8 and Figure 5-4). With this policy,

90

ii
Disk Traffic: Last Dirty Blockii

Andrew Vm-make Sortii
Disk Writes Disk Writes Disk Writesiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiii

Data Total Data Total Data Total
Client
Policy Disk

Util Ind/
Desc

Disk
Util Ind/

Desc

Disk
Util Ind/

Descii
9% 939 368 1307 6% 687 309 997 17% 721 60 781WT
1.50 1.94 2.13 1.99 2.00 2.75 1.82 2.37 2.13 2.56 2.22 2.53ii
9% 937 316 1253 6% 685 269 954 17% 724 50 774WBOC
1.50 1.94 1.83 1.91 2.00 2.74 1.58 2.27 2.13 2.57 1.85 2.50ii
15% 818 621 1439 12% 672 721 1393 52% 723 656 1379ASAP
2.50 1.69 3.59 2.19 4.00 2.69 4.24 3.32 6.50 2.56 24.30 4.46ii

WBOC- 15% 937 656 1594 12% 689 744 1433 50% 724 665 1389
ASAP 2.50 1.94 3.79 2.43 4.00 2.76 4.38 3.41 6.25 2.57 24.63 4.50ii

6% 484 205 690 3% 260 190 450 13% 403 34 438delay-30
1.00 1.00 1.18 1.05 1.00 1.04 1.12 1.07 1.63 1.43 1.26 1.42ii

full- 7% 483 228 711 3% 250 184 434 8% 282 27 309
delay 1.17 1.00 1.32 1.08 1.00 1.00 1.08 1.03 1.00 1.00 1.00 1.00ii
WT- 7% 596 278 875 3% 258 206 465 8% 280 27 307
TMP 1.17 1.23 1.61 1.33 1.00 1.03 1.21 1.11 1.00 0.99 1.00 0.99ii

WBOC- 7% 595 250 845 3% 256 181 437 8% 282 28 310
TMP 1.17 1.23 1.45 1.29 1.00 1.02 1.06 1.04 1.00 1.00 1.04 1.00ii

ASAP- 8% 559 303 862 3% 260 201 461 24% 282 346 628
TMP 1.33 1.15 1.75 1.31 1.00 1.04 1.18 1.10 3.00 1.00 12.81 2.03iicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 5-8. The amount of disk traffic with the LDB policy. The top line for each
client policy is the disk utilization and the number of disk writes for the three bench-
marks. The bottom line is the top line divided by the disk utilization or number of disk
writes with the full-delay policy on the client and the delay-30 policy on the server.

data, descriptor, and indirect blocks are not written through to disk until the last dirty

block from the file arrives from the client; the server uses the delay-30 policy in combi-

nation with this policy so that modified directories will get written through to disk

periodically. The LDB policy eliminates varying amounts of disk traffic depending on

the client’s policy.

When clients use either the full-delay or delay-30 policy, LDB keeps the disk

traffic fairly low; each indirect block only gets written to disk once and there is exactly

one file descriptor block write per file. The one benchmark for which LDB is the least

effective is Sort; when the delay-30 policy is used on the client, Sort generates 50%

more disk writes than with the full-delay policy. This is because Sort is the one bench-

91

mark that has temporary files that live longer than 30 seconds; as a result, some data

from temporary files ends up getting written through to the server’s disk.

The client WT and WBOC policies perform much better with the LDB policy than

when either ASAP or WT are used on the server. When the client uses WT or WBOC,

the server only ends up writing back the data for the file when the file is closed. How-

ever, this still requires up to 2.5 times as many disk writes as when the client uses a

delayed-write policy.

I could have implemented the combination of the client WT policy and the LDB

policy in a different way. When the client uses write-through, each block that is written

to the server is the last dirty block that the client has for the file; thus, in the most

ASAP TMP TMP TMP

1.0

2.0

3.0

4.0

5.0

6.0

7.0

SortVm-makeAndrew

ASAP-WBOC-WT-full-delaydelay-30WBOC-ASAPWBOCWT

D
i
s
k

T
r
a
f
f
i
c

R
a
t
i
o

Figure 5-4. Ratio of disk writes with the LDB policy and the client policies in this
figure to disk writes with full-delay on the client and delay-30 on the server.

92

straightforward implementation of LDB, each block that was written to the server

would be marked as being the last dirty block. However, this would be no different

than if the server used a write-through policy. In order to get a different data point I

implemented the combination of client WT and LDB so that the file is only forced to

disk when the file is closed.

The client ASAP policies do not perform very well under the LDB policy. Unless

a user program can generate cache blocks faster than the operating system can write

them back to the server, the client will think that each newly generated block is the last

dirty block in the file. This results in up to 24 times as many descriptor and indirect

block writes as when the client uses delayed-write.

The client policies that treat temporary files specially work well with the LDB pol-

icy. For both the Andrew and Vm-make benchmarks, all three of the temporary file

policies require less than 40% more disk writes than when the client uses delayed-write

for all files. Although both the WT-TMP and WBOC-TMP policies also perform very

well on the Sort benchmark, the ASAP-TMP policy requires twice as many disk bytes

as the delayed-write policy.

5.4. Client Elapsed Time

From a client’s viewpoint, the most important performance measurement is the

amount of time that it takes to execute the benchmark. Table 5-9 shows that, when the

server uses the delay-30 policy, the elapsed time on the client is basically the same

regardless of the policy used on the client. However, when the server uses a write-

through policy, the client policy becomes very important (see Table 5.10 and Figure 5-

93

iii
Client Elapsed Time and Server Utilization: 30-Second Delay on Serveriii

Andrew Vm-make Sort
Client iii

Elapsed Server Elapsed Server Elapsed Server
Policy

Time Util Time Util Time Utilii
279 12.98 300.08 9.33 66.10 11.22

WT
1.04 1.17 1.04 1.14 1.14 2.01iii
276 12.26 299.19 9.10 65.22 10.94

WBOC
1.03 1.10 1.03 1.11 1.13 1.96iii
273 12.55 296.60 9.30 62.53 11.51

ASAP
1.02 1.13 1.02 1.14 1.08 2.06iii
273 12.52 296.68 9.31 62.48 11.47

WBOC-ASAP
1.02 1.12 1.02 1.14 1.08 2.06iii
269 11.37 290.97 8.25 58.66 7.02

delay-30
1.00 1.02 1.00 1.01 1.01 1.26iii
268 11.13 289.81 8.18 57.92 5.58

full-delay
1.00 1.00 1.00 1.00 1.00 1.00iii
275 12.16 293.67 8.47 60.48 5.65

WT-TMP
1.03 1.09 1.01 1.04 1.04 1.01iii
274 11.55 293.71 8.23 60.52 5.63

WBOC-TMP
1.02 1.04 1.01 1.01 1.04 1.01iii
272 11.73 294.13 8.35 59.36 5.71

ASAP-TMP
1.01 1.05 1.01 1.02 1.02 1.02iiicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 5-9. The amount of time required to execute each benchmark and the percent of
the server that is utilized with the delay-30 policy on the server. The top line for each
client policy is the number of seconds to execute the benchmark and the percent of the
server that was utilized while executing the benchmark. The bottom line is the top line
divided by the execution time or server utilization in the best case (full-delay policy on
the client and delay-30 policy on the server).

94

iii
Client Elapsed Time and Server Utilization: WT on Serveriii

Andrew Vm-make Sort
Client iii

Elapsed Server Elapsed Server Elapsed Server
Policy

Time Util Time Util Time Utilii
424 11.03 370.13 9.13 124.45 10.11

WT
1.58 0.99 1.28 1.12 2.15 1.81iii
378 10.83 359.06 8.86 124.58 10.10

WBOC
1.41 0.97 1.24 1.08 2.15 1.81iii
316 12.87 312.51 10.04 65.54 17.64

ASAP
1.18 1.16 1.08 1.23 1.13 3.16iii
345 12.01 329.82 9.71 87.38 14.15

WBOC-ASAP
1.29 1.08 1.14 1.19 1.51 2.54iii
295 11.25 307.69 8.13 70.04 9.41

delay-30
1.10 1.01 1.06 0.99 1.21 1.69iii
292 10.79 304.88 8.09 60.53 6.69

full-delay
1.09 0.97 1.05 0.99 1.05 1.20iii
380 10.79 339.18 8.21 84.16 6.60

WT-TMP
1.42 0.97 1.17 1.00 1.45 1.18iii
343 10.56 325.96 7.93 83.77 6.57

WBOC-TMP
1.28 0.95 1.12 0.97 1.45 1.18iii
310 11.75 309.31 8.33 61.70 8.24

ASAP-TMP
1.16 1.06 1.07 1.02 1.07 1.48iiicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 5-10. The amount of time required to execute each benchmark and the percent
of the server that is utilized with the write-through policy on the server. The top line
for each client policy is the number of seconds to execute the benchmark and the per-
cent of the server that was utilized while executing the benchmark. The bottom line is
the top line divided by the execution time or server utilization in the best case (full-
delay policy on the client and delay-30 policy on the server).

95

WT WBOC ASAP WBOC- delay-30 full-delay WT- WBOC- ASAP-
0%

20%

40%

60%

80%

100%

120%

D
e
g
r
a
d
a
t
i
o
n

Andrew Vm-make Sort

TMPTMPTMPASAP

Figure 5-5. Additional elapsed time to execute each benchmark with a write-through
policy on the server and the client policies in this figure relative to full-delay on the
client and delay-30 on the server.

5). The extra synchronous disk writes on the server can make a client take up to twice

as long to execute the benchmark as when the server uses a delay-30 policy. Even the

WT-TMP and WBOC-TMP polices can slow the client down by over 40%. The only

client policies that work uniformly well with server write-through are the full-delay,

delay-30, ASAP and ASAP-TMP policies, which have at worst 21% degradation; these

policies can handle the extra disk writes because the client programs do not have to

wait for the writes to complete.

A server policy that provides reliability nearly as good as write-through yet does

not slow down the client much is ASAP (see Table 5-11 and Figure 5-6). With the

ASAP policy, the client slows down by less than 15% in the worst case. This perfor-

mance is possible because the disk writes are asynchronous: a client does not have to

96

iii
Client Elapsed Time and Server Utilization: ASAP on Serveriii

Andrew Vm-make Sort
Client iii

Elapsed Server Elapsed Server Elapsed Server
Policy

Time Util Time Util Time Utilii
282 14.42 301.27 10.40 65.71 17.05

WT
1.05 1.30 1.04 1.27 1.13 3.06iii
279 13.01 300.22 9.63 66.04 12.99

WBOC
1.04 1.17 1.04 1.18 1.14 2.33iii
277 13.65 298.06 10.27 61.94 17.72

ASAP
1.03 1.23 1.03 1.26 1.07 3.18iii
277 13.61 298.42 10.28 62.00 17.68

WBOC-ASAP
1.03 1.22 1.03 1.26 1.07 3.17iii
270 11.65 292.28 8.28 58.86 7.91

delay-30
1.01 1.05 1.01 1.01 1.02 1.42iii
268 11.47 290.27 8.20 57.98 5.90

full-delay
1.00 1.03 1.00 1.00 1.00 1.06iii
276 13.14 294.77 8.72 60.90 8.62

WT-TMP
1.03 1.18 1.02 1.07 1.05 1.54iii
274 12.06 294.32 8.33 60.80 6.01

WBOC-TMP
1.02 1.08 1.02 1.02 1.05 1.08iii
273 12.40 293.37 8.54 59.38 8.58

ASAP-TMP
1.02 1.11 1.01 1.04 1.03 1.54iiicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 5-11. The amount of time required to execute each benchmark and the percent
of the server that is utilized with the ASAP policy on the server. The top line for each
client policy is the number of seconds to execute the benchmark and the percent of the
server that was utilized while executing the benchmark. The bottom line is the top line
divided by the execution time or server utilization in the best case (full-delay policy on
the client and delay-30 policy on the server).

97

WT WBOC ASAP WBOC- delay-30 full-delay WT- WBOC- ASAP-
0%

20%

40%

60%

80%

100%

120%

Andrew Vm-make Sort

D
e
g
r
a
d
a
t
i
o
n

TMPTMPTMPASAP

Figure 5-6. Additional elapsed time to execute each benchmark with an ASAP policy
on the server and the client policies in this figure relative to full-delay on the client and
delay-30 on the server.

wait for the disk write to complete before it can continue execution.

The LDB server policy provides better client performance than write-through but

not nearly as good as ASAP (see Table 5-12 and Figure 5-7). Since clients have to wait

for disk writes to complete when they close a file under the WBOC and WT policies,

the client’s performance degrades by up to 35%. However, if the client uses any of the

other policies, then the degradation is 14% or less, with no noticeable degradation with

the full-delay and delay-30 policies.

5.5. Server Utilization

Although the delay-30 policy on the server allows clients to use more reliable poli-

cies without suffering degradation, the more reliable policies can put a high load on the

98

iii
Client Elapsed Time and Server Utilization: Last-dirty-block Policyiii

Andrew Vm-make Sort
Client iii

Elapsed Server Elapsed Server Elapsed Server
Policy

Time Util Time Util Time Utilii
306 12.87 317.58 9.72 79.49 10.34

WT
1.14 1.16 1.10 1.19 1.37 1.85iii
302 12.09 315.66 9.26 78.58 10.67

WBOC
1.13 1.09 1.09 1.13 1.36 1.91iii
277 13.75 299.14 10.54 62.51 20.33

ASAP
1.03 1.24 1.03 1.29 1.08 3.64iii
294 13.15 305.30 10.38 64.84 19.85

WBOC-ASAP
1.10 1.18 1.05 1.27 1.12 3.56iii
269 11.68 291.85 8.43 59.47 8.02

delay-30
1.00 1.05 1.01 1.03 1.03 1.44iii
267 11.32 291.47 8.34 57.94 6.07

full-delay
1.00 1.02 1.01 1.02 1.00 1.09iii
292 12.09 302.90 8.71 65.28 5.60

WT-TMP
1.09 1.09 1.05 1.06 1.13 1.00iii
290 11.42 301.56 8.24 65.81 6.09

WBOC-TMP
1.08 1.03 1.04 1.01 1.14 1.09iii
275 12.27 293.59 8.60 59.29 10.90

ASAP-TMP
1.03 1.10 1.01 1.05 1.02 1.95iiicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 5-12. The amount of time required to execute each benchmark and the percent
of the server that is utilized with the last-dirty-block policy. The top line for each
client policy is the number of seconds to execute the benchmark and the percent of the
server that was utilized while executing the benchmark. The bottom line is the top line
divided by the execution time or server utilization in the best case (full-delay policy on
the client and delay-30 policy on the server).

99

WT WBOC ASAP WBOC- delay-30 full-delay WT- WBOC- ASAP-
0%

20%

40%

60%

80%

100%

120%

Andrew Vm-make Sort

D
e
g
r
a
d
a
t
i
o
n

TMPTMPTMPASAP

Figure 5-7. Additional elapsed time to execute each benchmark with an LDB policy
on the server and the client policies in this figure relative to full-delay on the client and
delay-30 on the server.

100

SortVm-makeAndrew

o
i
t
a
R

n
o
i
t
a
z
i
l
i
t
U

3.7

3.4

3.1

2.8

2.5

2.2

1.9

1.6

1.3

1.0
ASAP-WBOC-WT-full-delaydelay-30WBOC-ASAPWBOCWT

ASAP TMPTMPTMP

Figure 5-8. Ratio of server utilization with a write-through policy on the server and
the client policies in this figure to server utilization with a full-delay policy on the
client and the delay-30 policy on the server.

server. Table 5-9 presented in the previous section shows the server utilization with the

delay-30 server policy when executing the 3 benchmarks with the 9 different client

writing policies. With the Andrew and Vm-make benchmarks, the clients are able to

use the more reliable policies without adversely effecting server utilization; the worst

case is client WT, which utilizes the server 1.17 times as much as the best case utiliza-

tion, which is obtained with the full-delay policy. However, with the very intensive

Sort benchmark, all of the non-delayed-write polices cause the server utilization to dou-

ble.

When the server uses write-through instead of delay-30, the server utilization

improves for some client writing polices and gets worse for others (see Table 5-10 and

Figure 5-8). If the client uses the WT or WBOC client polices, the clients slow down

101

1.0

1.3

1.6

1.9

2.2

2.5

2.8

3.1

3.4

3.7

SortVm-makeAndrew

full-delaydelay-30ASAPWBOCWT

U
t
i
l
i
z
a
t
i
o
n

R
a
t
i
o

WBOC-
ASAP TMP

WT-
TMP

WBOC-
TMP

ASAP-

Figure 5-9. Ratio of server utilization with an ASAP policy on the server and the
client policies in this figure to server utilization with a full-delay policy on the client
and the delay-30 policy on the server.

so much that the server utilization drops for all three benchmarks. When the client uses

either the ASAP or WBOC-ASAP policies, the server utilization increases so that for

the Sort benchmark it is up to 3 times higher than the best case; for the Andrew and

Vm-make benchmarks, the utilization increases slightly but is still at worst only 1.26

times the best case utilization. The reason why the client ASAP policies cause the

server utilization to increase is that the server’s workload is increased but the clients are

not much slower than the best case elapsed time. For the same reason even the client

delayed-write and temporary-file polices have slightly higher server utilization with the

Sort benchmark and server write-through.

The server ASAP policy is the worst policy for server utilization (see Table 5-11

and Figure 5-9). With this policy the clients do not slow down by much, but the server

102

1.0

1.3

1.6

1.9

2.2

2.5

2.8

3.1

3.4

3.7

SortVm-makeAndrew

full-delaydelay-30ASAPWBOCWT

U
t
i
l
i
z
a
t
i
o
n

R
a
t
i
o

WBOC-
ASAP TMP

WT-
TMP

WBOC-
TMP

ASAP-

Figure 5-10. Ratio of server utilization with the LDB policy and the client policies in
this figure relative to a full-delay policy on the client and the delay-30 policy on the
server.

does more work than when it uses delay-30. For the Andrew and Vm-make bench-

marks, the server utilization is still fairly low; in the worst case it is only 1.3 times the

best case utilization. However, with the Sort benchmark, each of the policies WT,

WBOC, ASAP and WBOC-ASAP have a server utilization that is between 2.5 and 3

times the best case utilization. With the delayed-write and temporary file policies, the

utilization is worse for some policies and better for others; in the worst case, the utiliza-

tion is 1.5 times the best case utilization.

The LDB policy is in between the server ASAP policy and the server WT policy

(see Table 5-12 and Figure 5-10). For the Sort benchmark, it gives utilization as high

as the server ASAP policy when the clients use either the ASAP or WBOC-ASAP poli-

cies and as low as the server WT policy if the clients use either the WT or WBOC poli-

103

cies. It is highest when clients use an ASAP policy because the clients force extra disk

writes on each server cache write without slowing down. The utilization is lower with

the WT and WBOC policies because only a single extra data block and disk block write

is required for each file. One thing to note is that, although the server utilization with

the client WT and WBOC policies is the same with the LDB and server WT policies,

the client benchmarks complete much faster with the LDB policy.

5.6. Effect of Disk Layout on Write Performance

As mentioned before, the Sprite file system’s disk reading and writing perfor-

mance is not as good as that of other systems such as UNIX 4.2 BSD [MJL84]. Sprite’s

poor writing performance could potentially contribute to the extra client degradation,

server utilization and disk utilization when more reliable server writing policies are

used. There are two areas where Sprite disk writing performance could be improved.

First, currently Sprite can only transfer one block per disk revolution because consecu-

tive data blocks are not allocated in rotationally optimal locations on disk; by using a

better disk layout policy, Sprite could get much higher throughput to disk. Second,

Sprite does not put descriptor and indirect blocks close to the data blocks; this can

require long seeks when a file descriptor or indirect block write is followed by a data

block write.

The policy which would benefit most from improving the disk layout policy is

LDB. When the client uses any policy but ASAP in conjunction with LDB, the server

will have all of the files blocks in its cache before it has to write any of the blocks to

disk. Thus, if consecutive blocks in a file were in rotationally optimal positions, the

104

server could write the entire file to disk very quickly. This would lower disk utilization

and client degradation.

Neither the write-through or ASAP server policies would benefit much from a

better layout policy. Both of these policies require that, whenever a data block is writ-

ten to disk, the file descriptor and indirect blocks be written to disk as well. Thus,

between every write of a data block there will have to be a seek to the descriptor or

indirect block.

Reducing the seek time between data, indirect, and descriptor blocks could have a

big effect on the performance of the server ASAP and write-through policies; its biggest

effect would be on client elapsed time with the server write-through policy. In order to

approximate the impact of the seek time I measured the writing performance with

server write-through on both a very large disk partition which will cause long seeks and

on a very small disk partition which will have short seeks. I measured that a client can

iii
Client Degradation with Reduced Seek Timesiii

Andrew Vm-make Sort
Client iii

Policy Before After Before After Before Afterii
WT 58% 43% 28% 21% 115% 84%iii

WBOC 41% 30% 24% 18% 115% 84%iii
ASAP 18% 13% 8% 6% 13% 10%iii

WBOC-ASAP 29% 21% 14% 10% 51% 37%iiic
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c

Table 5-13. The effect of shortening seek times between file descriptor, indirect and
data blocks when the server uses write-through. The Before column is the degradation
when the benchmarks were run on the normal large disk partition (98% of disk) and
the After column is an approximation of what the degradation would be if the bench-
marks were run on a small partition (2% of the disk).

105

transfer 49 Kbytes per second to the small partition and 36 Kbytes per second to the

large partition. This means that in the best case client degradation will only be 36/49,

or 73% as high if the length of disk seeks were reduced. However, Table 5-13 shows

that, even with this reduction in client degradation, clients still slow down substantially

when they use either the WT or WBOC policies and the server uses write-through.

5.7. Comparison to NFS

Sun’s Network File System (NFS) uses the WBOC-ASAP policy on the client and

a write-through policy on the server. Table 5-10 shows that this policy will cause the

Andrew benchmark to execute 29% slower than with the writing policies used on

Sprite. Even if NFS is able to get the better disk performance shown in Table 5-13, the

benchmark would execute 21% more slowly. In Chapter 4 I showed that Sprite executes

the Andrew benchmark about 30% faster than NFS. It appears from the results in this

chapter that up to two-thirds of the performance difference comes from the writing poli-

cies used in NFS.

5.8. Summary and Conclusions

In this chapter I have examined numerous client and server writing policies. As

expected, the writing policies that provide the best overall performance in terms of net-

work load, disk load, server load and client elapsed time are delayed-write policies.

From a client’s viewpoint, the most important performance metric is execution time

degradation. If the server uses a delayed-write policy, then the client’s policy will have

only a small impact on the time it takes to execute a benchmark; the client delayed-

write policies provide the best client performance, but even the more reliable client

106

policies will cause degradation of at most 14% if the server uses the delay-30 policy.

The ASAP and LDB server policies also allow the client to use more reliable policies

with only modest degradation. However, if the server uses a write-through policy, then

the more reliable client policies can cause up to a 115% degradation in client perfor-

mance.

In terms of determining the scalability of the system, the most important factors

are server, disk and network load; the writing policies can have a dramatic impact on

each of these factors. The amount of network traffic is independent of the server policy.

The more reliable client policies can cause the network traffic to more than double over

the delayed-write policies. Thus, the delayed-write client policies can allow the net-

work to support up to twice as many clients as the other client writing policies.

Both the client and the server writing policies have a big impact on server utiliza-

tion. The non-delayed-write client policies can cause the server utilization to double

even when the server uses the delay-30 policy. The client policy has an even bigger

impact when the server uses more reliable policies such as write-through and ASAP; for

these server policies the non-delayed-write client policies can cause the server utiliza-

tion to triple. If the server uses a non-delayed-write policy, even the delay-30 client

policy causes server utilization to be up to 1.7 times higher. Thus, if the server and the

client use delayed-write policies, then a server can support up to 3 times as many clients

as when non-delayed-write policies are used.

The utilization of the disk also increases dramatically with non-delayed-write poli-

cies. When the server uses a write-through policy the amount of disk traffic will

107

increase by up to a factor of 7; even the client delayed-write policies will cause the disk

traffic to triple with server write-through. The LDB and ASAP server policies give less

disk writes than server write-through, but more than when the server uses delay-30.

Thus, if the server does not use the delay-30 policy then the number of clients that can

be supported by each disk will be much lower.

One potential way to give clients both high reliability and high performance is to

treat temporary files specially: use a reliable policy for most files but use a full-delay

policy for temporary files. For the three benchmarks, all of which use temporary files

extensively, treating temporary files specially is reasonably effective. With the delay-

temp-files policies, the network traffic and server utilization are close to the delay-30

and full-delay client policies. However, when the server uses more reliable writing pol-

icies, the benchmarks can execute up to 45% more slowly than the best client policy,

and the disk can be up to twice as utilized. The one benchmark for which delaying tem-

porary files works best is Sort, which writes all of its output except for the final result to

temporary files. Thus, using full-delay on temporary files and a more reliable policy on

other files shows some potential, but it is not able to totally insulate the client from

more reliable server writing policies. If other files besides those in the /tmp directory

were considered temporary files (such as object files), then special casing of temporary

files would be more effective.

Server write-through is by far the worst server policy in terms of performance. I

have presented two alternatives to server write-through, which provide nearly as good

reliability, yet with better performance. Both the ASAP and LDB policies work very

well with the full-delay and 30-second delay client policies; they give low disk and

108

server utilization, while allowing the clients to execute without suffering degradation.

The policies which delay temporary files also work reasonably well with the ASAP and

LDB policies, although there is higher disk utilization and client degradation than when

the client uses the full-delay and delay-30 policies. The ASAP and LDB policies work

better than write-through with the 4 non-delayed-write client policies. However, LDB

can still cause serious client degradation, and ASAP can cause very high disk and

server utilization.

This chapter has shown that the writing policy can have a large impact on both

client and server performance. The best policies for performance are the worst for reli-

ability, and the best policies for reliability are the worst for performance. Thus, the

writing policy to use for clients and servers must be a compromise between perfor-

mance and reliability. The choice of the writing policy will become even more impor-

tant in the future, as CPU speeds increase dramatically but disk speeds do not; any pol-

icy that requires application programs to wait for the disk will cause serious perfor-

mance degradation.

109

CHAPTER 6

Variable-Sized Caches

6.1. Introduction

I have shown that file data caches are very effective in providing high performance

to diskless clients. In order to get the maximum benefit from client caching, it is desir-

able to let each client cache be as large as possible. For example, applications that do

not require much virtual memory should be able to use most of the physical memory as

a file cache. However, if the caches were fixed in size (as they are in UNIX), then large

caches would leave little physical memory for running user programs, and it would be

difficult to run applications with large virtual memory needs. Therefore a mechanism is

needed that lets each file cache grow and shrink dynamically in response to changing

demands on the machine’s virtual memory system and file system.

This chapter looks at approaches to providing variable-sized file system caches. It

is organized as follows: Section 6.2 summarizes previous work in this area; Section 6.3

describes the approach that I implemented in Sprite; Section 6.4 analyzes the perfor-

mance of the Sprite mechanism; Section 6.5 measures the effect on performance of

modifications to the Sprite algorithm; Section 6.6 compares the performance of the

Sprite approach to other approaches; and Section 6.7 gives a summary and offers some

conclusions.

110

6.2. Previous Work

The approach that has been commonly used to provide variable-size file system

caches is to combine the virtual memory and file systems together; this is generally

called the mapped-file approach. To access a file, it is first mapped into a process’s vir-

tual address space and then read and written just like virtual memory. This approach

eliminates the file cache entirely; the standard page replacement mechanisms automati-

cally balance physical memory usage between file and program information. Mapped

files were first used in Multics [BCD72, DaD68] and TENEX [BBM72, Mur72]. More

recently they have been implemented in Pilot [Red80], Accent [RaR81, RaF86], Apollo

[LLH85, Lea83] and Mach [Ras87].

Mapped files present a much different interface than systems such as UNIX that

keep the file system and virtual memory system separate. Under the UNIX approach,

users use system calls such as read and write to access file data. These system calls

copy data between the file data cache and the virtual address space of user processes.

By using mapping techniques, the mapped-file approach can eliminate many of the

copy operations required under the UNIX approach.

The main problem with the mapped-file approach is that it constrains the number

of options available for caching and cache consistency; since all reads and writes hap-

pen directly to a client’s memory, all clients must be allowed to cache files in their

memory. This would make it impossible to use Sprite’s simple cache consistency algo-

rithm, which requires caches to be disabled under some conditions.

111

One scheme that keeps mapped file caches consistent without requiring users to

lock their files is one that has been implemented by Kai Li [Li86]. His scheme provides

cache consistency at the page level. It is a complex scheme in which each page is

‘‘owned’’ by a workstation. Whenever a workstation wishes to read a page that is not

already in its memory, a copy of the page is fetched from the page’s owner. In order to

modify a page, a copy of the page must be acquired from the owner, and then the

workstation that is modifying the page becomes the owner of the page. Acquiring own-

ership causes the page to be removed from all other workstation’s memories.

Another potential problem with mapped files is that the hardware may make map-

ping difficult. Some newer workstations use a virtually addressed hardware cache

[Hil86, Kel86, SSS85]. These caches do not support synonyms − multiple virtual

addresses pointing to the same physical address. Thus, if one file system page is

mapped into two different processes’ virtual address spaces at different virtual

addresses and one process is modifying the page, the hardware will not guarantee that

the two processes will see a consistent view of the data in the page. Actually, this

presents a consistency problem similar to the file system consistency problem men-

tioned earlier, including problems related to both concurrent and sequential sharing.

The result is that, on certain hardware, mapped files may introduce additional complex-

ity and overhead.

A third problem with the mapped-file approach is that it treats virtual memory and

file system data in the same way. Unfortunately, the access patterns of the two types of

data may be entirely different. For example, file accesses are typically sequential and

while virtual memory accesses are not. Therefore, it may make sense to use different

112

replacement strategies for the two types of data.

6.3. Sprite Mechanism

The mapped-file approach that I just described has the nice properties that it pro-

vides a single mechanism for accessing file and virtual memory data, and it eliminates

copy operations. However, because of the potential problems with mapped files, I

decided to investigate alternative mechanisms for providing variable-sized caches. The

mechanism that I developed allows the file system cache to vary in size by having the

virtual memory system and the file system modules negotiate over physical memory

usage. The mechanism not only provides variable-sized caches, but it also allows

Sprite to use a simple cache consistency mechanism, it works well on machines with

virtually-addressed hardware caches, and it allows Sprite to treat virtual memory and

file pages differently if that should become necessary or desirable. It has the disadvan-

tage that it requires more page copying for I/O than the mapped-file approach.

In the Sprite mechanism, the file system module and the virtual memory module

each manage a separate pool of physical memory pages. Virtual memory keeps its

pages in approximate LRU order through a version of the clock algorithm [Nel86]. The

file system keeps its cache blocks in perfect LRU order since all block accesses are

made through the ‘‘read’’ and ‘‘write’’ system calls. Each system keeps a time-of-

last-access for each page or block. Whenever either module needs additional memory

(because of a page fault or a miss in the file cache), it compares the age of its oldest

page with the age of the oldest page from the other module. If the other module has the

oldest page, then it is forced to give up that page; otherwise the module recycles its

113

own oldest page. This LRU time comparison is done using a simple procedural inter-

face between the two modules.

The approach just described has two potential problems: double-caching and

multi-block pages. Double-caching can occur because virtual memory is a user of the

file system: backing storage is implemented using ordinary files, and read-only code is

demand-loaded directly from executable files [Nel86]. A naive implementation might

cause pages being read from backing files to end up in both the file cache and the

virtual-memory page pool; pages being eliminated from the virtual-memory page pool

might simply get moved to the file cache, where they would have to age for another 30

seconds before being sent to the server. To avoid these inefficiencies, the virtual

memory system bypasses the local file cache when reading and writing backing files. A

similar problem occurs when demand-loading code from its executable file. In this

case, the pages may already be in the file cache (e.g., because the program was just

recompiled). If so, the page is copied to the virtual memory page pool, and the block in

the file cache is given an ‘‘infinite’’ age so that it will be replaced before anything else

in memory. The page is copied instead of remapped because, as explained below, there

may be multiple file system blocks per page.

Although virtual memory bypasses its local file cache when reading and writing

backing files, the backing files will be cached on servers. This makes servers’

memories into extended main memories for their clients.

The second problem with the negotiation between virtual memory and the file sys-

tem occurs when virtual memory pages are large enough to hold several file blocks. Is

114

the LRU time of a page in the file cache the age of the oldest block in the page, the age

of the youngest block in the page, or some sort of average? Once it is determined

which page to give back to virtual memory, what should be done with the other blocks

in the page if they have been recently accessed? For the Sun-3 implementation of

Sprite, which has 8-Kbyte pages but 4-Kbyte file blocks, I used a simple solution: the

age of a page is the age of the youngest block in the page, and when a page is relin-

quished all blocks in the page are removed.

I also considered more centralized approaches to trading off physical memory

between the virtual memory page pool and the file cache. One possible approach would

have been to implement a centralized physical memory manager, from which both the

virtual memory system and the file system would make page requests. The centralized

manager would compute page ages and make all replacement decisions. I rejected this

approach because the most logical way to compute page ages is different for virtual

memory than for files. The only thing the two modules have in common is the notion

of page age and LRU replacement. These shared notions are retained in the distributed

mechanism, while leaving each module free to age its own pages in the most con-

venient way. The Sprite approach also permits the relative aging rates to be adjusted

for virtual memory and file pages, which we have found desirable. The effect of this

adjustment is discussed in Section 6.5.

6.4. Variable-Size Cache Performance

The Sprite variable-size cache mechanism will work very well if only file-

intensive programs are run, because the cache will be allowed to grow very large.

115

Likewise, if users run purely VM-intensive programs, the cache will become small and

let most of physical memory be used by the virtual memory system. This section looks

at how well the Sprite variable-size cache mechanism performs when users run both

file- and virtual-memory-intensive programs. I will use the results from a benchmark

that is both file- and virtual-memory-intensive to answer the following questions:

1) How well do fixed-size caches perform with the benchmark?

2) How do fixed-size and variable-size caches compare?

3) What is the effect of changes in physical memory size?

The benchmark that I used is an edit-compile-debug benchmark that runs under

the X11 window system on Sprite (see Table 6-1). This benchmark represents work

that is commonly done on Sprite, and is both VM and FS intensive. In order to

iii
Component Description FS I/O VM Image Sizeiii

Edit 70 Kbytes 560 KbytesRun window-based
editor on 2500 line
file.iii

Compile Compile VM Module 800 Kbytes 1 Mbyteiii
Link Link the kernel 8 Mbytes 3 Mbytesiii

Debug Run kernel debugger 4 Mbytes 8.5 Mbytesiii
Environment -- 5 MbytesThe X window sys-

tem plus several
typescript windows
and tools.iiicc

c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c

Table 6-1. This table describes each of the components of the edit-compile-debug
benchmark. The first two columns describe the component of the benchmark. The
third column gives the amount of bytes read and written by each benchmark step. The
last column gives the size of the largest virtual memory image of the step. The last
row is not a step in the benchmark but rather shows the total amount of memory re-
quired by the basic environment in which the benchmark is running.

116

facilitate running the benchmark, I modified Sprite so that I could inject mouse events

into the X11 input stream. Using this feature, I was able to move the mouse around

under program control and enter commands in various windows; basically, I was able

to simulate under program control the actions of a normal user of the window system.

The benchmark was run on a Sun-3/75 client with 16 Mbytes of memory, and the

server was a Sun-3/180 with 16 Mbytes of memory. The server used an 8-Mbyte cache.

I varied both the amount of physical memory available on the client and whether or not

the client was using a fixed-size cache or the Sprite variable-size cache mechanism.

Each benchmark consisted of two runs through the edit-compile-link-debug loop, where

the benchmark components were run in one of three windows. Each data point was

taken from the average of three runs of the benchmark. In this section I will only

present the most important results from the benchmark; see Appendix C for more

detailed results including standard deviations.

6.4.1. Variable vs. Fixed-Size Caches

The results from Chapter 4 suggest that a large fixed-size cache will provide the

best performance for file-intensive programs. However, for the edit-compile-debug

benchmark, the smallest fixed-size cache is best. Figure 6-1 gives the elapsed time and

server utilization for the benchmark as a function of the amount of physical memory

available on the client and the size of its file cache. A cache of 0.5 Mbytes provides the

lowest elapsed time, and a cache from 0.5 Mbytes to 1 Mbyte gives the lowest server

utilization for the benchmark; note that this benchmark is so virtual-memory-intensive

that even with the largest physical memory the smallest-sized cache is best.

117

e
m
i
T

d
e
s
p
a
l
E

Megabytes of Cache

900

800

700

600

500

400

300

200

100

0
6543210

11 Mbytes on client

12 Mbytes on client

14 Mbytes on client

16 Mbytes on client

n
o
i
t
a
z
i
l
i
t
U

r
e
v
r
e
S

Megabytes of Cache

25%

20%

15%

10%

5%

0%
6543210

16 Mbytes on client

14 Mbytes on client

12 Mbytes on client

11 Mbytes on client

(a) (b)

Figure 6-1. Elapsed time and server utilization for the edit-compile-debug benchmark
with fixed-size caches as a function of client physical memory size. In both graphs
the X-axis is the size of the file cache. In graph (a) the Y-axis is the number of
seconds to execute the benchmark and in graph (b) the Y-axis is the percent of the
server’s CPU that was utilized while the client was executing the benchmark. The sys-
tem thrashed whenever the amount of physical memory left for the virtual memory
system dropped below 10 Mbytes. I did not run the benchmark for points where
thrashing occurred (since elapsed time more than doubles), which explains why some
curves have fewer data points than others.

118

FS bytes

VM bytes

Net bytes

0 1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

Megabytes of Cache

M
b
y
t
e
s

t
r
a
n
s
f
e
r
r
e
d

Figure 6-2. This graph gives the number of Mbytes transferred across the network for
the edit-compile-debug benchmark with fixed-size caches and 16 Mbytes of memory
on the client. The X-axis is the size of the cache and the Y-axis is the number of
Mbytes transferred.

Figure 6-2 clearly shows why the smallest cache is best for this benchmark (graphs

of network bytes transferred for the other four memory sizes will yield similar results -

see Appendix C). As the cache grows in size, the number of file system bytes

transferred drops. However, because the amount of physical memory available for vir-

tual memory decreases with the increased file system cache, the number of page faults

and hence virtual memory system bytes transferred increases. This causes a net

increase in the number of network bytes transferred and a corresponding increase in

client degradation and server utilization.

The results with fixed-size caches clearly demonstrate that there is no one cache

size that will yield the best performance for both the file intensive programs from

Chapter 4 and the file and virtual-memory intensive benchmark in this chapter. For-

119

e
m
i
T

d
e
s
p
a
l
E

Megabytes on Client

1000

900

800

700

600

500

400

300

200

100

0
16151413121110

Variable

Fixed Fixed

Variable

n
o
i
t
a
z
i
l
i
t
U

r
e
v
r
e
S

Megabytes on Client

25

20

15

10

5

0
16151413121110

Figure 6-3. Elapsed time and server utilization for the edit-compile-debug benchmark
with a variable-sized cache and with the smallest fixed-size cache as a function of phy-
sical memory size. In both graphs the X-axis is the amount of cache. In graph (a) the
Y-axis is the number of seconds to execute the benchmark and in graph (b) the Y-axis
is the percent of the server’s CPU that was utilized while the client was executing the
benchmark.

tunately, the Sprite variable-size cache mechanism works well for both types of bench-

marks. Figure 6-3 shows that, in terms of elapsed time and server utilization, the

variable-size and fixed-size cache mechanisms provide nearly identical performance.

The reason why the performance is similar is clearly demonstrated in Figure 6-4, which

gives the amount of network traffic. The variable-sized cache gives consistently fewer

file system bytes transferred than a fixed-size cache, and the fixed-sized cache gives

fewer virtual memory bytes transferred. However, in terms of overall net bytes

transferred, the variable-size is slightly better than the best fixed-size cache. Thus, the

poorer virtual memory performance for the variable-size cache is more than offset by

the much better file system performance.

120

VM - fixed

FS - fixed

Net - fixed

VM - variable

FS - variable

Net - variable

d
e
r
r
e
f
s
n
a
r
t

s
e
t
y
b
M

Megabytes on Client

120

100

80

60

40

20

0
16151413121110

Figure 6-4. This graph gives the number of Mbytes transferred across the network
with variable-size and smallest-fixed-size caches and 16 Mbytes of memory on the
client. The X-axis is the amount of cache and the Y-axis is the number of Mbytes
transferred.

The measurements from Chapter 4 (see Figure 4-1) and of the file- and virtual-

memory intensive benchmark show that the Sprite variable-size cache mechanism is

uniformly better than any fixed-size cache. When file-intensive benchmarks are run,

the variable-size cache lets the cache get as large as is necessary. However, even when

file and virtual memory activities are intermixed, the variable-size cache provides per-

formance that is at least as good as the performance possible with the optimal fixed-size

cache.

6.4.2. Negotiation Activity

The edit-compile-debug benchmark shifts between file- and virtual-memory-

intensive programs. This requires that there be constant shifts in the allocation of

121

ii
FS Asks VM VM Asks FS

Client Min Max iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Mem Cache Size Cache Size
(Mbytes) (Mbytes) (Mbytes)

Num Satisfied Num Satisfied
ii

10 0.25 5.6 8125 1810 2942 1846ii
11 0.25 6.4 7105 1889 2610 1967ii
12 0.25 6.9 5840 1964 2555 2075ii
14 0.25 8.7 4012 1957 2669 2162ii
16 0.34 8.8 3652 1937 2629 2229iic

c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

Table 6-2. Traffic between the virtual memory system and the file system. The first
column gives the amount of physical memory available on the client. The second and
third columns give the minimum and maximum cache sizes during the benchmark.
The fourth and fifth columns are the number of times that the file system asked the vir-
tual memory system for the access time of its oldest page and the number of times that
it was able to get a page from the virtual memory system. The sixth and seventh
columns are the same as the previous two, except that they are the number of times the
virtual memory system asked the file system for memory.

physical memory between the file system and the virtual memory system (see Table 6-

2). The minimum and maximum cache size columns from Table 6-2 show that the file

cache varied widely in size during the life of the benchmark, going from the minimum

possible size (0.25 Mbytes) up to over half the amount of physical memory available.

As the amount of physical memory increased, the maximum size of the cache increased

as well; the variable-size cache mechanism allowed the file system to take advantage

of the extra physical memory.

Table 6-2 also shows the amount of negotiation that went on between the virtual

memory system and the file system. As the amount of physical memory increased, the

number of times that the file system attempted to get memory from the virtual memory

system dropped dramatically; however, the number of times that the file system was

successful in stealing a page from the virtual memory system remained fairly constant

across all memory sizes. In contrast, the number of requests for memory made by the

122

virtual memory system to the file system remained reasonably constant for all memory

sizes, but the virtual memory system was more successful in taking pages from the file

system as the amount of memory increased.

Table 6-2 suggests that the virtual memory system is much less elastic in its needs

than the file system, at least for this benchmark; I hypothesize that this is true in gen-

eral. The low success rate that the file system has when asking the virtual memory sys-

tem for memory implies that the pages in the virtual memory system are being more

actively used than those in the file system. Thus, the virtual memory system has fairly

strict memory needs regardless of the physical memory size, and it actively uses the

pages that it has. The file system, on the other hand, because it caches files after they

are no longer being used, will grow to fill the available memory. Since the file system

does not actively use many of its cached pages, its pages are the best candidates for

recycling.

6.5. Penalizing the File System

The Sprite variable-size cache mechanism that I have described so far treats vir-

tual memory and file system data the same; it is basically a global LRU mechanism

where all pages are ordered by their LRU times. However, the two types of data are

actually quite different. The sequential nature of file accesses [Ous85] means that a low

file hit ratio should have a much smaller impact on system performance than a low

virtual-memory hit ratio. Also, the level of interactive response relies almost entirely

on virtual memory system performance, not on the performance of the file system. In

this section I will investigate the effect on both overall and interactive performance of

123

giving the virtual memory system priority over the file system.

The method that I developed to bias against the file system involves adding a fixed

number of seconds to the reference time of each virtual memory page. This makes each

virtual memory page appear to have been referenced more recently than it actually was.

For example, if 5 minutes is added to the reference time of each virtual memory page,

then the file system will not be able to take any page from the virtual memory system

that has been referenced within 5 minutes of the oldest file system page.

(b)(a)

960 Second

480 Second

240 Second

120 Second

60 Second

No penalty

960 Second

480 Second

240 Second

120 Second

60 Second

No penalty

10 11 12 13 14 15 16
0

5

10

15

20

25

Megabytes of Memory

S
e
r
v
e
r

U
t
i
l
i
z
a
t
i
o
n

10 11 12 13 14 15 16
0

100

200

300

400

500

600

700

800

900

1000

Megabytes of Memory

E
l
a
p
s
e
d

T
i
m
e

Figure 6-5. Elapsed time and server utilization with various penalties as a function of
client physical memory size. In both graphs the X-axis is client memory size. In
graph (a) the Y-axis is the number of seconds to execute the benchmark and in graph
(b) the Y-axis is the percent of the server’s CPU that was utilized while the client was
executing the benchmark.

124

After implementing this simple mechanism for penalizing the file system, I wanted

to see what effect it had on system performance. I first measured its effect using the

same benchmark and configuration that I used in the previous section. I tried penaliz-

ing the file system from 60 seconds up to 960 seconds (longer than the life of the bench-

mark). In this section I will present only the most important results from the bench-

mark; see Appendix C for detailed results.

The results of this benchmark indicate that penalizing the file system has little or

no effect on overall performance. Figure 6-5 shows that, regardless of the penalty, the

elapsed time and server utilization are about the same. Figure 6-6 shows why the

penalty has no effect. As the penalty is made larger, the virtual memory performance

gets better and the file system performance worse. The result is that overall perfor-

mance is about the same regardless of the penalty.

The interactive component of the edit-compile-debug benchmark is small; most of

the time is spent in debugger initialization and in the compiler and linker. As a result, it

cannot be used to provide a good measurement of the effects of the file system penalty

on interactive response. In order to look at the impact of penalizing the file system on

interactive response, I developed a benchmark which simulates concurrent interactive

and file system activity; I will call this benchmark the IFS benchmark. The interactive

component of the benchmark is a program which periodically touches many pages in its

virtual address space. This simulates a user who is interacting with a program. Each

time a user interacts with a program, the program must have its code, heap and stack

pages memory-resident in order to give good interactive response. In fact, if the user is

interacting with a program under a window system such as X11, then several programs

125

F
SM

V

(b)(a)

No penalty

60 Second

120 Second

240 Second

480 Second

960 Second

10 11 12 13 14 15 16
0

10

20

30

40

Megabytes of Memory

M
b
y
t
e
s

No penalty

60 Second

120 Second

240 Second

480 Second

960 Second

s
e
t
y
b
M

Megabytes of Memory

70

60

50

40

30

20

10

0
16151413121110

10 11 12 13 14 15 16
0

10

20

30

40

50

60

70

80

90

100

110

Megabytes of Memory

b
y
t
e
s

M

e
t
w
o
r

N

k

No penalty

60 Second

120 Second

240 Second

480 Second

960 Second

(c)

Figure 6-6. These graph gives the number of Mbytes transferred across the network
with various penalties as a function of client memory size. In all three graphs the X-
axis is the amount client memory and the Y-axis is the total number of Mbytes
transferred during the benchmark. Graph (a) is virtual memory traffic, (b) is file sys-
tem traffic and (c) is total network traffic.

may have to be memory-resident in order for the user to get good interactive response.

126

The file system component of the IFS benchmark is the Sort benchmark that was

described in Chapter 4. I chose Sort because it is the benchmark that is most sensitive to

changes in the file system cache size; of all benchmarks, its performance is most likely

to degrade if the file cache size is reduced. The Sort program is run concurrently with

the interactive program to simulate a file system program that attempts to grow its

cache by stealing memory from an interactive program. Penalizing the file system

should prevent Sort from stealing memory away from the interactive program, but it

may cause the Sort program to degrade in performance.

The configuration that I used was an 8-Mbyte Sun-3/75 client and a 16-Mbyte

Sun-3/180 server. 1.3 Mbytes of the 8 Mbytes on the client are used by the kernel,

which leaves 6.7 Mbytes for user processes. I made the interactive program use 5.7

Mbytes of memory and left at most 1 Mbyte for Sort and the file system cache. I left

only 1 Mbyte for Sort so that Sort will contend with the virtual memory system for

memory.

The percentage of memory that the interactive program dirties each time it touches

the memory in its address space may impact the performance of the IFS benchmark. In

order to approximate the percentage of memory that an average program dirties, I meas-

ured the amount of dirty memory on 5 workstations running Sprite. Between 40 and 60

percent of the memory that was being used by user processes was dirty on these

machines. Because of this result, I made the interactive component of the IFS bench-

mark dirty half of the memory that it touches.

127

ii
Sleep No penalty Penaltyiii

Response Time Sort Time Response Time Sort TimeiiiInterval
Min Max Avg Time Deg Min Max Avg Time Degii

1 0.0 4.7 0.1 79.6 33% 0.0 0.4 0.03 74.8 25%ii
5 0.0 4.5 0.8 83.8 40% 0.0 0.1 0.02 72.8 21%ii
10 1.9 13.3 5.9 103.4 72% 0.0 0.1 0.01 72.1 20%ii
30 12.5 22.0 15.8 96.3 61% 0.0 0.1 0.03 74.0 23%iic

c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c

cc
c
c
c
c
c

cc
c
c
c
c
c
c

cc
c
c
c
c
c
c

cc
c
c
c
c
c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c

cc
c
c
c
c
c

cc
c
c
c
c
c
c

cc
c
c
c
c
c
c

cc
c
c
c
c
c

c
c
c
c
c
c
c
c
c

Table 6-3. Response time and elapsed time for the IFS benchmark. Each data point is
the average of the results from three runs of the benchmark. The first column gives the
number of seconds that the interactive benchmark slept before touching all of its
memory. Columns 2 through 6 give the results when the file system was not penal-
ized. Columns 2 through 4 give the minimum, maximum and average number of
seconds it took the interactive benchmark to touch all of its memory when it awoke
from its sleep. Columns 5 and 6 give the total number of seconds it took to execute the
Sort benchmark, and the amount of degradation relative to the best case given in
Chapter 4 (60 seconds). The last five columns are the results when the file system was
penalized by 120 seconds.

Tables 6-3 and 6-4 show the impact of the file system penalty on the performance

of the IFS benchmark. Table 6-3 shows that, when the file system is not penalized, the

response time has a high variance. Sometimes it is instantaneous and other times it can

take up to 22 seconds. The response time gets worse when the interactive program

touches memory less frequently. Short sleep intervals correspond, for example, to tem-

porary pauses in an editing session. Longer sleep intervals correspond, for example, to

windows that have been idle because the user was working in a different window.

Longer sleep intervals allow the sort program to steal more memory (see Table 6-4).

This causes the interactive program to wait for pages to get faulted in from the file

server.

Table 6-3 shows that, when the file system is penalized, the interactive response is

excellent. The 120-second penalty prevents the file system from taking any memory

away from the virtual memory system. Thus, regardless of the amount of time that the

128

ii
Sleep No penalty Penaltyiii

Faults Page Cache Size Faults Page Cache Sizeiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiInterval
Total Swap Outs Min Max Total Swap Outs Min Maxii

1 1217 173 456 152 784 783 1 4 64 178ii
5 1261 437 509 157 842 781 0 0 64 168ii
10 2481 1605 1177 146 1226 781 0 0 64 168ii
30 2097 1250 983 141 2533 782 0 0 64 168iic

c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c

cc
c
c
c
c
c
c

cc
c
c
c
c
c
c

cc
c
c
c
c
c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c

cc
c
c
c
c
c
c

cc
c
c
c
c
c
c

cc
c
c
c
c
c

c
c
c
c
c
c
c
c
c

Table 6-4. Cache size and page fault behavior for the IFS benchmark. Each data
point is the average of the results from three runs of the benchmark. The first column
gives the number of seconds that the interactive benchmark slept before touching all of
its memory. Columns 2 through 6 give the results when the file system was not penal-
ized. Column 2 is the total number of page faults that occurred, Column 3 is the
number of faults from swap space, Column 4 is the number of pages that were written
to swap space and Columns 5 and 6 give the minimum and maximum amount of
memory in Kbytes that was resident in the cache during the benchmark. The last five
columns are the results when the file system was penalized by 120 seconds.

interactive program pauses between successive touching of its memory, the response

time is the same.

Surprising, the file system penalty actually improves the execution time of the Sort

benchmark (see Table 6-3). Without the penalty, the benchmark takes up to 72%

longer to execute than the best case given in Chapter 4. The performance degrades

because the CPU is busy trying to fault in pages for the interactive benchmark; if the

interactive benchmark is memory resident, then it utilizes very little of the CPU. When

the file system is penalized, Sort takes only 25% longer than the best case. This degra-

dation is nearly identical to the degradation shown in Chapter 4 when Sort was run

using only a small cache.

As I mentioned earlier, I had the interactive component of the IFS benchmark

dirty half of its memory. In order to determine the effect of the amount of dirty

memory, I ran the IFS benchmark where it only dirtied 10% of its memory (see Table

6-5). A comparison of Tables 6-3, 6-4 and 6-5 shows that the amount of dirty memory

129

has only a very minor impact on the performance of the IFS benchmark.

The results of the benchmarks in this section show that penalizing the file system

can improve interactive response without degrading overall system performance. In

some cases, it can even make the performance of both file- and virtual-memory inten-

sive programs better. However, it is not clear what the optimal penalty should be. The

penalty should be large enough so that idle user programs that will be used in the near

future will not get removed from memory, but not so large that the performance of the

file system is degraded unnecessarily. The best value for the penalty will depend on the

behavior of the users of the system. In Sprite we normally set the penalty to 20

minutes. This means that an interactive program’s pages will not be reclaimed by the

file cache until the program has been idle for 20 minutes.

iii
Sleep Response Time Sort Time Faults Page Cache Sizeiii iiiiiiiiiiiii

Interval Min Max Avg Time Deg Total Swap Outs Min Maxii
1 0.0 7.3 0.1 77.3 29% 1111 157 353 186 845iii
5 0.0 5.4 0.8 80.7 35% 1206 399 446 186 925iii
10 0.0 11.8 7.1 100.7 68% 2431 1576 890 178 1245iii
30 12.3 23.0 17.7 89.8 50% 1889 1088 798 128 2621iiicc

c
c
c
c
c
c

cc
c
c
c
c
c
c

cc
c
c
c
c
c
c

cc
c
c
c
c
c

cc
c
c
c
c
c

cc
c
c
c
c
c
c

cc
c
c
c
c
c

cc
c
c
c
c
c
c

cc
c
c
c
c
c

cc
c
c
c
c
c
c

cc
c
c
c
c
c
c

cc
c
c
c
c
c

cc
c
c
c
c
c
c

Table 6-5. Results from the IFS benchmark when only 10% of memory was dirtied
and no penalty was used. Each data point is the average of the results from three runs
of the benchmark. The first column gives the number of seconds that the interactive
benchmark slept before touching all of its memory. Columns 2 through 4 give the
minimum, maximum and average number of seconds that it took the interactive bench-
mark to touch its memory when it awoke from its sleep. Columns 5 and 6 give the total
number of seconds that it took to execute the sort benchmark and the amount of degra-
dation relative to the best case given in Chapter 4 (60 seconds). Column 7 is the total
number of page faults that occurred, Column 8 is the number of faults from swap
space, Column 9 is the number of pages that were written to swap space and Columns
10 and 11 give the minimum and maximum amount of memory in Kbytes that was
resident in the cache during the benchmark.

130

ii
Megabytes SecondsiiiBenchmark

Read Written Total Read Written Total
Degradation

ii
Vm-make 9.20 2.39 11.59 3.31 1.14 4.45 1.5%ii
Andrew 7.62 3.12 10.74 2.74 1.48 4.22 1.6%ii

Sort 2.70 2.70 5.40 0.97 1.28 2.25 4.0%ii
Diff 2.00 0.00 2.00 0.72 0.0 0.72 19.1%ii

Ditroff 0.69 0.79 1.48 0.25 0.38 0.63 0.5%iic
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c

cc
c
c
c
c
c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c

cc
c
c
c
c
c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

Table 6-6. Cost of not using mapped files. The first column identifies the benchmark,
the second column the total number of Mbytes read and written during the life of the
benchmark, the third column the approximate number of seconds spent reading and
writing the data and the last column the degradation of the benchmark compared to
free reads and writes (no copying). The time spent copying was computed by taking
the amount of data that was read and written, dividing it into 4 Kbyte blocks (the file
system block size), and then multiplying it by the time to read and write 4 Kbyte
blocks. On Sprite, 4-Kbyte data blocks can be read and written at rates of 2,912,711
bytes/second and 2,207,528 bytes/second respectively, or approximately 350us per
Kbyte read and 463us per Kbyte written. Note that the reading and writing speeds
given here are less than the ones given in Table 4-2 in Chapter 4. This is because the
speeds in Chapter 4 were measured with larger blocks to get the maximum possible
throughput.

6.6. Comparison to Mapped Files

One of the disadvantages of the Sprite variable-size cache mechanism is that it

requires that data be copied between the user and kernel virtual address spaces during

I/O. For example, when a user reads data from a file, the data is copied from the file

system cache into a buffer in the user’s address space. Mapped files eliminate these

copy operations at the expense of an extra mapping cost. Table 6-6 contains the

approximate performance penalty for using the Sprite mechanism instead of mapped

files on the 5 benchmarks from Chapter 4. The results in Table 6-6 are a worst-case

approximation of the Sprite penalty because they were calculated under the assumption

that reads and writes are free under the mapped file scheme. The client degradation of

Sprite’s scheme in comparison to a mapped-file scheme ranges from 0.5 to 19.1 per-

cent. However, except for the highly input-intensive Diff benchmark, the highest

131

degradation is only 4.0% and the average is only 1.9%. Thus, the extra copying with

the Sprite mechanism has only a small effect, except for highly I/O-intensive bench-

marks such as Diff.

6.7. Summary and Conclusions

In this Chapter I have demonstrated the effectiveness of variable-size file caches.

Variable-size caches allow the amount of file data to grow for file-intensive programs,

yet they work just as well as fixed-size caches for mixtures of file- and virtual-memory

intensive programs; there is no fixed-size cache that can out-perform a variable-size

cache.

I have also shown that a simple variable-size cache can be built that is not based

on the mapped-file paradigm. The Sprite variable-size cache mechanism works by hav-

ing the virtual memory system and file system negotiate over the use of physical

memory. This allows Sprite to use a simple cache consistency mechanism and incurs

no extra overhead on machines that make mapping expensive. The extra copying cost

required in Sprite over mapped file schemes is small and does not noticeably degrade

client performance over mapped-file schemes; if the mapping cost is high enough, then

the Sprite mechanism will outperform mapped-file schemes.

The Sprite variable-size cache mechanism allows the file system to be penalized

so that it will be more difficult for the file system to take memory from the virtual

memory system. The use of the penalty appears to be effective in improving interactive

response without degrading file system performance. The optimal value of the penalty

is not yet clear; how much to penalize the file system will depend on the behavior of the

132

users of the system.

133

CHAPTER 7

Copy-on-Write For Sprite

7.1. Introduction

In systems that create new processes by forking, one of the major costs of process

creation is copying the address space from the parent to the newly created child. A

common method of improving the performance of process creation is by using copy-

on-write: pages in the address space are initially shared by the parent and child; a page

is not actually copied until one of the processes attempts to modify it. Copy-on-write

saves not only copying of pages in memory, but also copying of pages that are on back-

ing store. Copy-on-write has been implemented in several systems, with the earliest

being TENEX [BBM72, Mur72] and one of the most recent being Mach [Ras87].

This chapter describes a simple copy-on-write mechanism that I have imple-

mented as part of Sprite. It differs from other copy-on-write mechanisms in that it is

actually a combination of copy-on-write (COW) and copy-on-reference (COR); for

each page that is involved in copy-on-write activity, one segment has it copy-on-write

and all other segments that reference it have it copy-on-reference. I chose the COW-

COR mechanism for two reasons: virtually-addressed caches and simplicity. The

SPUR hardware [Hil86], which is one of Sprite’s target machines, uses virtually-

addressed caches that do not provide efficient support for copy-on-write; expensive

cache flushing operations are required in order to implement copy-on-write on a SPUR.

134

As I will explain later, the Sprite COW-COR scheme can be implemented on architec-

tures such as a SPUR with less cache flushing overhead than a pure copy-on-write

scheme.

The other major reason for using the Sprite scheme was simplicity. One of the

major complexities of copy-on-write is handling the tree of descendants that results

from a single parent. In the Sprite scheme, this potentially-complex tree structure is

represented by a simple linear list. This simplification and others made the addition of

copy-on-write to Sprite an easy task; the implementation was completed in less than

one man-week.

In order to compare the Sprite COW-COR scheme to copy-on-fork schemes, I

measured the performance of the Sprite COW-COR scheme by running benchmark pro-

grams against Sprite and by monitoring normal use of the system. The measurements

indicate that the COW-COR mechanism can potentially improve fork performance over

copy-on-fork schemes from 10 to 100 times depending on whether pages are resident in

memory or on backing store. However, during normal use, the COW-COR mechanism

provides a much smaller benefit: less than 30 percent of page copy operations are elim-

inated. Also, the 70% of the pages that are copied are copied at the expense of extra

page faults. With the Sprite implementation, the overhead of handling the additional

page faults results in worse overall performance than copy-on-fork; a more optimized

implementation could provide more than a 20% improvement in performance over

copy-on-fork. A pure copy-on-write scheme would eliminate 10 to 20 percent of the

page copy operations required under COW-COR, and would provide up to a 20%

improvement in fork performance over COW-COR. However, because of extra cache-

135

flushing overhead on machines with virtually-addressed caches, copy-on-write may

have worse overall performance than COW-COR on these types of machines.

The rest of this Chapter is organized as follows: Section 7.2 gives a brief overview

of the Sprite virtual memory system; Section 7.3 discusses previous work and Mach in

particular; Section 7.4 describes the Sprite copy-on-write mechanism; Section 7.5 com-

pares the Sprite scheme to a pure copy-on-write scheme; and Section 7.6 gives meas-

urements of the performance of the Sprite scheme.

7.2. Sprite Virtual Memory

A Sprite process’s virtual address space is divided up into three segments: code,

heap and stack. Each segment has its own page table that describes the segment’s vir-

tual address space, and each segment has its own file that is used for backing store.

Segments can be shared by different processes. When a process is forked using a

copy-on-fork mechanism, a) the child will share the parent’s code segment read-only,

b) the child is given a copy of the stack segment, and c) the heap segment is either

write-shared or a copy of it is given to the child. A copy-on-write mechanism has the

potential of saving the actual copying of pages in the stack and heap segments.

The most common scenario where copy-on-write may be helpful is the fork-exec

sequence. This is the case where a parent creates a child with the fork system call and

then the child immediately replaces the address space that it shares with its parent with

a new address space with the exec system call. This happens, for example, in the UNIX

shells for each command executed. If neither the parent nor the child modify many

pages between the fork and the exec, then copy-on-write may be able to save many page

136

copy operations.

7.3. Previous Work

The original idea of copy-on-write emerged over 15 years ago with TENEX

[BBM72, Mur72]. Since then it has been implemented in several systems

[Akh87, GMS87, Ras87, SCC86]. The Mach operating system [Ras87] is one of the

most recent systems to implement copy-on-write, and is one of the few whose imple-

mentation of copy-on-write has been published in detail. Copy-on-write is an integral

part of Mach; it is the basis for both efficient message transmission and efficient process

creation. This section briefly describes the Mach implementation of copy-on-write as it

pertains to process creation.

A Mach process’s address space is defined by an address map which is a linked

list of references to memory objects. When a process forks, the memory objects are

‘‘copied’’ using copy-on-write. This is done by making the address maps of the parent

and child point to the same memory objects. When a page in the copied memory object

is written, a new page is given to the process that wrote the page. In order to hold new

pages that are copied because of a copy-on-write fault, Mach creates an object called a

shadow object. Those pages that are modified are copied to the shadow object and

unmodified pages are kept in the original object; pages only have to be copied if they

are modified.

The complexity that arises in the Mach scheme is that a shadow object may itself

be shadowed as a result of a copy-on-write copy operation. This can result in an entire

chain of shadow objects being created (see Figure 7-1). In order to satisfy a page fault,

137

S2 O1S1

P1

S2 O1S1

P3P1

O1S1

P3P1

O1S1

P1

O1S1

P2P1P2

O1

P1

(a) (b) (c)

(d) (e) (f)

Figure 7-1. Mach copy-on-write. In (a) process P1 forks creating process P2. They
both share object O1. In (b) P1 modifies a page and gets a shadow object to hold the
modified page. P1’s address map points to the shadow object which in turn points to
the original object. In (c) P2 exits leaving P1 with the chain of two objects. In (d) P1
forks P3. They both share the object O1 and the shadow object S1. In (e) P1 modifies
a page in either O1 or S1 and gets a new shadow object S2. Now P2 has a chain of 3
objects: two shadow objects and the original object. When P3 exits in (f), P1 is still
left with the 3 objects. However, by recognizing that the shadow objects completely
overlap the original object, the extraneous shadow objects can be eliminated.

the list of shadow objects and then possibly the original object need to be searched to

find the data for the page. Much of the complexity involved in Mach memory manage-

ment is involved in preventing long chains of shadow objects [Ras87]. In particular,

the extraneous shadow objects shown in Figure 7-1 that are left over after a child exits

can be eliminated by moving the pages in the shadow objects into the original object.

138

7.4. Sprite COW-COR

The Sprite copy-on-write scheme was designed with a more restrictive set of goals

than Mach’s. The goals behind the Sprite design were:

g To make process creation efficient in a UNIX-like environment.

g To be able to run as efficiently as possible on machines such as a SPUR that have

virtually-addressed caches.

g To yield as simple an implementation as possible.

In particular, Sprite’s copy-on-write scheme does not participate in the implementation

of message communication; this simplified the design constraints in comparison to

Mach.

7.4.1. Overview

Sprite uses a combination of copy-on-write and copy-on-reference, as illustrated in

Figure 7-2. For each page that is involved in copy-on-write activity, one segment

(called the master segment) has the page marked copy-on-write and all other segments

that reference the page (called slave segments) have it marked copy-on-reference.

When a process forks, the segment in the parent process becomes the master segment

and the segment in the child becomes the slave segment. All pages in the master seg-

ment are marked copy-on-write and made read-only. All pages in the slave segment are

marked copy-on-reference and made inaccessible.

A copy-on-reference fault occurs when a copy-on-reference page is referenced.

When the fault occurs, the master copy-on-write page is located, and a copy is made for

139

(b) COR Fault:

COR, Master seg = 1

Resident

Segment 3

Next seg

Page table

COR, Master seg = 1

COR, Master seg = 1

Segment 2

Next seg

Page tablePage table

Next seg

Segment 1

On backing store, COW

Resident, COW

(a) Fork:

COR, Master seg = 1

COR, Master seg = 1

Segment 3

Next seg

Page table

COR, Master seg = 1

COR, Master seg = 1

Segment 2

Next seg

Page tablePage table

Next seg

Segment 1

On backing store, COW

Resident, COW

P1 P2 P3

P1 P2 P3

Resident

On backing store, COW

Segment 1

Next seg

Page table Page table

Next seg

Segment 2

COR, Master seg = 1

Resident, COW

Page table

Next seg

Segment 3

Resident

COR, Master seg = 2

(c) COW Fault:

P1 P2 P3

Figure 7-2. Sprite copy-on-write. In (a) the process (P1) that owns segment 1 forks
two children and creates two copy-on-reference copies, segments 2 and 3, which are
owned by processes P2 and P3 respectively. The page table entry (PTE) for each of
the COR pages names the segment with the COW copy. In (b) P3 references the
second page in segment 3 and a copy of the page is loaded into segment 3 from S1’s
swap file. The copy is made readable and writable. In (c) P1 modifies the first page in
segment 1 and gives a new COW copy to segment 2. Segment 3’s PTE is updated to
point to segment 2 and segment 1’s page is made readable and writable.

the slave segment. In order to allow the master copy of the page to be easily located,

the page table entry for each copy-on-reference page names the master segment for the

page (as shown below, different pages may reference different master segments).

140

When a process attempts to modify a copy-on-write page (call it A), a copy-on-

write fault occurs. A copy-on-write fault is more complex than a copy-on-reference

fault because a new copy-on-write master segment for the page must be found so that

the master segment can modify its copy of the page. This new copy-on-write master

must be one of the slave segments. In order to allow a slave segment to be easily

located, the master segment and each of its slave segments are linked together in a list;

a master can have multiple slave segments if a parent forks multiple children. The new

master segment is found by searching the list of segments for a slave segment that con-

tains a page that is copy-on-reference off of A. This slave segment is given a copy-on-

write copy of A (call it B). All of the remaining segments that have pages that were

copy-on-reference off of A must now be changed to reference B as their master. This is

done by searching the list and updating the page table entries of each segment that was

copy-on-reference off of A to point to the new master segment.

When a segment is deleted because a process exits or execs, copy-on-write depen-

dencies in the deleted segment need to be eliminated. Pages that are copy-on-write

must be copied to another segment. Each copy-on-write page (call it A) in the deleted

segment is copied to another segment that contains a page (call it B) that used to be

copy-on-reference off of A. If A is resident in memory, this is done by remapping the

page in A onto B. Otherwise, the backing store for A is copied to B’s backing store.

Copy-on-reference pages in the deleted segment are ignored; this may cause extraneous

copy-on-write page faults and is discussed below. Once all copy-on-write dependen-

cies are eliminated, the segment is deleted from the linked list.

141

7.4.2. Trees of Descendants

The previous section only mentioned COW-COR for a single parent with multiple

children. However, if processes with copy-on-write slave segments fork, then a tree of

copy-on-write and copy-on-reference relationships will result. Rather than build a

tree-like data structure to represent the relationships, Sprite puts all of the related seg-

ments in the same linked list. This can be done because the page table entry for each

copy-on-reference page names the segment that contains the master copy. This pro-

vides a simpler implementation and is based on the assumption that the lists will rarely

contain more than a few segments. The lists should be short because in a UNIX-like

environment processes normally replace their address space by calling the exec system

call soon after they are created; the benchmark results in Section 7.6.2 validate this

assumption.

One difference between the Sprite and Mach mechanisms is that, when a page

fault of any type occurs, the location of the master copy of the page is immediately

known; no chain of objects needs to be traversed. However, Sprite does need to

traverse its linked list of segments for other reasons, as described above and below.

7.4.3. Eliminating Extra Copy-on-Write Faults

After a segment is deleted, or a copy-on-write fault or a copy-on-reference fault is

handled, there can be pages marked copy-on-write for which there is no longer a

corresponding copy-on-reference page. The easiest method of handling this problem is

to cleanup extraneous copy-on-write pages when they are faulted on. However,

because a copy-on-write fault is fairly expensive, the Sprite implementation of COW-

142

COR checks for the common causes of extra faults and eliminates them. For example,

after a copy-on-reference fault is handled on a page, the master may be the only seg-

ment that references the COW copy of the page; this case is detected and the page is

made writeable by the master.

Another common cause of extra page faults is segment deletion. After a copy-on-

reference segment is deleted, the master may be the only segment left in the list of

copy-on-write and copy-on-reference segments. Since, as explained above, copy-on-

reference pages in a deleted segment are ignored, this potentially leaves copy-on-write

pages for which there is no copy-on-reference page. However, this case is detected and,

when there are no longer any slaves off of a master, all of the pages in the master are

made writeable.

7.4.4. Backing Store

The backing store for each copy-on-write page is the master segment’s backing

store file. When a copy-on-reference fault occurs for a page that is on backing store and

not resident in memory, the page is read from the master segment’s backing store file.

Copy-on-write faults can only occur to pages that are memory resident. If a process

attempts to modify a copy-on-write page that is not memory resident, then a normal

page fault occurs instead of a copy-on-write fault. Once the faulting process continues,

it will try to modify the now-memory-resident page and a true copy-on-write fault will

occur. This second fault could be eliminated by slightly complicating the implementa-

tion, but the cost of the extra fault is very small in comparison to the cost of loading a

page from backing store.

143

7.5. Comparison of Sprite Scheme and Shadow Objects

Besides using a combination of copy-on-write and copy-on-reference instead of

pure copy-on-write, the major difference between Sprite and Mach is that Sprite does

not use shadow objects. The method that Sprite uses to implement COW-COR could

also be used to implement a pure copy-on-write scheme. The difference would be that,

when a process forks, each memory resident page would be marked copy-on-write in

both the parent and the child segment’s page tables, instead of copy-on-write in the

parent and copy-on-reference in the child. For pages that are only resident on backing

store, the page table entry of the child would be used to point to the parent segment

since the parent has the swap file.

The main advantage of the Sprite method of implementation of copy-on-write is

that it eliminates the potential to create chains of extraneous objects. For example, Fig-

ure 7-3 shows what happens under the Sprite scheme when a parent forks a child, the

parent modifies a page, and then the child exits. The result is that, after the child exits,

the Sprite scheme automatically cleans up the list; there are no extra structures to main-

tain or collapse.

The disadvantage of the Sprite scheme is that it can require extra copying of pages

when a parent exits before its child exits. With shadow objects, no copy operations are

required when a process exits, because shadow objects can exist even after the process

that created them has exited. However, under the Sprite scheme, when a segment is

deleted, all copy-on-write pages must be copied to another segment. In a normal UNIX

environment parents usually wait for their children to exit, so in practice the Sprite

144

(a)

Resident

On backing store

Segment 1

Next seg

Page table

Resident

On backing store

Segment 1

Next seg

Page table

Resident

On backing store, COW

Segment 1

Next seg

Page table Page table

Next seg

Segment 2

COR, Source seg = 1

Resident

Resident, COW

On backing store, COW

Segment 1

Next seg

Page table Page table

Next seg

Segment 2

COR, Source seg = 1

COR, Source seg = 1

(b)

(c) (d)

Figure 7-3. In (b) the process (call it P1) that owns segment 1 forks a child and creates
a copy-on-reference copy, segment 2, which is owned by process P2. In (c) P1
modifies one of the copy-on-write pages in segment 1 and gives a copy of the page to
segment 2. In (d) P2 exits causing segment 2 to be deleted. When segment 2 is delet-
ed, it is removed from the list and the lone copy-on-write page left in segment 1 is
made readable and writable. The result is that the state of segment 1 is restored back
to how it was in (a); that is, the state before segment 1 was created.

scheme should perform as well as the shadow object scheme.

7.6. Copy-on-Write Performance

I ran benchmark programs and measured normal use of Sprite in order to answer

several questions about the performance of the Sprite COW-COR scheme:

g What is the maximum potential benefit from COW-COR, compared to no copy-

on-write mechanism at all?

145

g What is the actual benefit from COW-COR during normal use, compared to no

copy-on-write mechanism at all?

g How does COW-COR compare to a pure copy-on-write scheme?

g How much more efficiently can COW-COR be implemented on a SPUR than a

pure copy-on-write scheme?

The benchmark programs are UNIX programs that have been converted to run on

Sprite, and the results obtained from the measurements of Sprite should be applicable to

any UNIX-like operating system. The measurements were taken on a Sun-3/75 works-

tation with 16 Mbytes of memory, 8-Kbyte pages and about 2 MIPS processing power.

The Sun-3/75 does not have a CPU cache.

7.6.1. Raw Performance

I used a simple benchmark to determine the maximum benefit attainable from

COW-COR during process creation. This benchmark forks a child and then waits for

the child to exit. The amount of memory that the parent has resident in memory or on

backing store when it does the fork can be varied. It is an optimistic measurement of

the benefit of copy-on-write because none of the pages are referenced or modified by

the parent or the child. Table 7-1 gives the results.

There are two interesting results from this benchmark. First, forks are substan-

tially faster under the COW-COR scheme than they are with copy-on-fork schemes:

more than 10 times faster for processes with large amounts of resident memory and

more than 100 times faster for processes with large amounts of memory on backing

146

iii
COW-COR Copy-on-Forkiii

Kbytes Mem-res Backing Store Mem-res Backing Storeii
0 22.8ms 22.8ms 22.5ms 22.4msiii

64 24.7 24.0 59.7 171.7iii
128 25.8 24.3 79.6 265.0iii
256 28.0 24.6 119.4 457.6iii
512 32.3 25.3 199.0 850.8iii

1024 41.1 26.8 358.6 1635.1iii
2048 58.7 29.7 677.2 3209.0iiicc

c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

Table 7-1. Raw Sprite COW-COR performance. This table gives the time in mil-
liseconds required per execution of a fork and wait call in the parent and an exit call in
the child as a function of segment size. These measurements were taken on a Sun-
3/75. The first column gives the number of Kbytes that were either memory resident
or on backing store when the parent forked. The second and third columns are the per-
formance with COW-COR and the fourth and fifth columns are without COW-COR
(i.e., all of the data had to be copied at fork time). "Mem-res" means that all of the
bytes were memory resident and "Backing Store" means that all of the bytes were on
backing store.

store. Thus, as expected, if processes with large amounts of memory fork and do not

reference many pages, copy-on-write can substantially improve fork performance.

Second, it is slower to fork a process when all of its pages are memory resident than

when all of its pages are on backing store. This is because the hardware protection

must be changed to make memory resident pages copy-on-write.

7.6.2. Realistic Performance

The benchmark described in the previous section gave a best-case scenario for the

COW-COR mechanism: a large process forks and does not reference any of its

memory. In order to make a more realistic determination of the benefits of the COW-

COR mechanism over traditional copy-on-fork schemes, I measured a file system

benchmark program, an edit-compile-debug benchmark and several days’ work of two

different Sprite designers. Table 7-2 describes the benchmarks and Table 7-3 gives the

147

results.

One interesting result from Table 7-3 is that the number of times pages were

marked copy-on-write was about the same as the number of times pages were marked

copy-on-reference. This implies that in general there is only one segment that has any

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Benchmark Descriptionii
Andrew Copy a directory hierarchy

containing 70 files and 200
Kbytes of data; examine the
status of every file in the
new subtree; read every byte
of the files; compile and link
the files. Developed by M.
Satyanarayanan for bench-
marking the Andrew file sys-
tem; see [HOWA87] for de-
tails (same as used in
Chapters 4 and 5).iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

ECD An edit-compile-debug
benchmark run under the
X11 window system (same
as used in Chapter 6).iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

User-A Several days’ work of a
Sprite system designer using
Emacs under the X11 win-
dow system. Work involved
editing, compiling and other
miscellaneous activities.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

User-B Several days’ work of a
Sprite system designer using
typescript windows and a
window-based editor under
the X11 window system.
Work involved editing, com-
piling, debugging and other
miscellaneous activities.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 7-2. Sprite COW-COR benchmarks.

148

given page mapped COR; if multiple segments had pages mapped COR, then there

would have to be more copy-on-reference pages than copy-on-write pages. Therefore,

the COW-COR lists should normally contain only two segments and the extra overhead

required to traverse the list on copy-on-write and copy-on-reference faults should be

small.

Perhaps the most interesting result in Table 7-3 is that, under normal use, COW-

COR saves less than 30% of the page copy operations that would be required under a

copy-on-fork scheme. Furthermore, copy-on-write schemes require additional page

faults that would not occur otherwise; as the cost of a page fault increases, the benefits

of COW-COR will diminish. I determined from measurements of Sprite that a page

fault takes 1.1 milliseconds on a Sun-3/75 workstation. In addition, from Table 7-1 it

can be calculated that the cost of a copy operation is approximately 2.5 milliseconds.

ii
Faults

COW COR iiiiiiiiiiiiiiiiiiiiiiiiiii Copies

Pages Pages COW COR % of Total Savedii
Andrew 2846 2846 1% 71% 26% 28%ii

ECD 1430 1448 5% 72% 15% 22%ii
User-A 38771 40231 8% 63% 30% 28%ii
User-B 109965 112257 6% 66% 23% 27%iicc

c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

c
c
c
c
c
c
c

c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

Table 7-3. Sprite COW-COR performance under more realistic conditions. This table
gives Sprite COW-COR statistics for the two benchmarks and the two measurements
of user activity. The second and third columns are the number of times a page was
marked copy-on-write and copy-on-reference by processes forking. Columns four and
five are the percentages of copy-on-write and copy-on-reference pages that actually
generated faults. The sixth column gives the percentage of the total number of faults
taken during the benchmark that were copy-on-write and copy-on-reference faults. Fi-
nally, the last column indicates how many page copies were saved by COW-COR rela-
tive to a copy-on-fork scheme.

149

Thus, in Sprite a page fault costs nearly half as much as a copy operation. Figure 7-4

shows that, with this fault cost, COW-COR provides slightly worse performance than

copy-on-fork.

The fault cost in Sprite is much higher than the fault cost in the Mach operating

system [Ras88]. In Mach the page fault cost is less than 10% of the copying cost. If

Sprite were able to attain the same low fault cost as Mach, forks would be 15 to 20 per-

cent faster with COW-COR than with copy-on-fork. Thus, with a highly optimized

page fault handler, COW-COR can provide a moderate performance improvement over

copy-on-fork schemes.

7.6.3. COW-COR vs. Pure Copy-on-Write

Nearly all of the faults that occurred during the benchmarks and normal use were

copy-on-reference faults. If a pure copy-on-write mechanism could eliminate these

faults, then it would provide much better performance than the COW-COR scheme.

However, for the two benchmarks and normal use, between 80 and 90 percent of those

pages that were copied because of copy-on-reference faults were eventually modified

(see Table 7-4). Thus, a pure copy-on-write scheme has only a small advantage over

the COW-COR scheme: only between 10 and 20 percent of the page copy operations

required under COW-COR would be eliminated.

Figure 7-4 shows the performance improvements possible on a Sun-3 with a pure

copy-on-write scheme. With the high Sprite fault cost, a pure copy-on-write scheme

provides a 5 to 20 percent improvement over copy-on-fork schemes and a 10 to 20 per-

cent improvement over the Sprite COW-COR scheme. With the low Mach fault cost,

150

0.65 (COW: User B)

0.58 (COW: User A)
0.63 (COW: ECD)

0.67 (COW: Andrew)
0.72 (COW-COR: Others)
0.78 (COW-COR: ECD)

Copy-on-Fork

Optimal
Mach
Sprite

t
s
o
C

l
a
t
o
T

Copy Fraction

1.5
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
1.00.90.80.70.60.50.40.30.20.10

Figure 7-4. Total cost of handling fork-related page copying on Sun-3’s as a function
of the fraction of pages copied because of copy-on-write or copy-on-reference faults.
A total cost of 1.0 corresponds to the cost of copying all pages at fork time. The op-
timal line represents the cost when the time required for each copy-on-write or copy-
on-reference fault is 0, the Mach line when each fault is 0.234 milliseconds (9% of the
cost of copying a page), and the Sprite line when each fault is 1.1 milliseconds (44% of
the cost of copying a page). The 2 rightmost vertical lines correspond to the fraction
of pages copied with the COW-COR mechanism for the benchmarks and the 4 left-
most vertical lines represent the fraction of pages that would have been copied with a
pure copy-on-write mechanism. The vertical line marked ‘‘Others’’ is the copy frac-
tion for Andrew, User A and User B.

copy-on-write provides fairly substantial improvements over copy-on-fork schemes.

Thus, with an optimized fault handler, copy-on-write reduces the fork cost by 30 to 40

percent over copy-on-fork schemes and by 10 to 20 percent over optimized COW-COR

schemes.

7.6.4. Cost of Virtually Addressed Caches

As mentioned earlier, one of the potential advantages of the Sprite COW-COR

scheme over a pure copy-on-write scheme is that it may reduce overhead on

151

iii
COW COR COR Pure-COW
Faults Faults Modified Faultsii

Andrew 1% 71% 93% 67%iii
ECD 5% 72% 81% 63%iii

User-A 8% 63% 79% 58%iii
User-B 6% 66% 90% 65%iiicc

c
c
c
c
c
c

cc
c
c
c
c
c
c

cc
c
c
c
c
c
c

cc
c
c
c
c
c
c

cc
c
c
c
c
c
c

cc
c
c
c
c
c
c

cc
c
c
c
c
c
c

Table 7-4. COW-COR vs. Copy-on-Write. This table gives the number of page faults
that would occur under a pure copy-on-write scheme for the two benchmarks and the
two measurements of user activity. The second and third columns show the percentage
of copy-on-write and copy-on-reference pages that actually generated faults. The
fourth column gives the percentage of those pages that were copied because of copy-
on-reference faults that were eventually modified; all of the copy-on-reference pages
that were eventually modified would have had to be copied under a pure copy-on-write
scheme. The last column is the percentage of pages that would have been copied
under a pure copy-on-write scheme; it is the second column added to the product of the
third and fourth columns.

architectures with virtually addressed caches, such as the Sun-3 [SSS85], Sun-4 [Kel86]

and SPUR [Hil86] architectures. In these machines, protection bits are stored along

with the data in individual cache lines. To change the protection on a page, the operat-

ing system must first modify the page table entry, then flush all of the page’s lines from

the cache. When the lines are re-loaded into the cache, their protection bits will be set

from the new page table entry.

When a process forks, all of its pages will have to be flushed from the cache in

order to mark them read-only. This flush must occur in either a pure copy-on-write

scheme or in Sprite’s COW-COR scheme. In addition, whenever a copy-on-write page

is made writable again, it will have to be flushed from the cache again. Once again, this

will occur in both schemes. However, Sprite’s mechanism allows a copy-on-reference

page to be made accessible without any cache flushes: since the page was not previ-

ously accessible, there will be no data from it in the cache. On average, Sprite’s

152

COW-COR mechanism will require 2 flushes per page (one at the time of the fork and

another one later, when the parent’s page eventually becomes writable again), while a

pure copy-on-write scheme will require about 2.6 on the average (one at the time of the

fork, another one when the parent’s page becomes writable again, and a third one on the

58 to 67 percent of the pages that resulted in copy-on-write faults in the child).

The actual number of cache flushes required will be smaller on architectures such

as the SPUR and the Sun-4, that use direct-mapped caches. With direct-mapped

caches, the act of copying a page between virtual addresses that have the same offset

within the cache will flush the source of the copy from the cache (the destination data

will replace the source data in the cache because they will both map to the same address

in the cache). Under COW-COR, over 70% of pages are copied. As a result, an aver-

age of only 1.3 cache flushes per page will be required with a direct-mapped cache (one

at the time of the fork and another one on the 30% of the parent’s pages that remain in

the cache). A pure copy-on-write scheme copies over 60% of the pages. This will give

an average of 2.0 flushes per page (one at the time of the fork, another one on the 40%

of the parent’s pages that remain in the cache, and a third one on the 58 to 67 percent of

the pages that resulted in copy-on-write faults in the child).

Although Sprite’s mechanism reduces cache flushing relative to pure copy-on-

write schemes, the overhead may still be quite high. For example, if the cost of flushing

a page is half as great as the cost of copying it, then any copy-on-write scheme will be

at least as expensive as a copy-on-fork mechanism, even if none of the copied pages are

ever accessed (unless the pages are on backing store). Since the Sprite COW-COR

mechanism has not yet been ported to a machine with a virtually addressed cache, I

153

have no measurement of the impact of cache flushing on fork performance. However, I

can estimate the impact of cache flushing on fork performance for the SPUR and Sun-4

architectures. Because the actual performance on a SPUR and a Sun-4 is dependent on

numerous variables, including the cache miss ratio and the percentage of data that is

modified, it is impossible to derive the exact fork cost without actually measuring it.

However, the worst and best case performance can be easily calculated.

0.78 (COW-COR: ECD)
0.72 (COW-COR: Others)
0.67 (COW: Andrew)

0.63 (COW: ECD)
0.58 (COW: User A)

0.65 (COW: User B)

Copy-on-Write
COW-COR

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Copy Fraction

T
o
t
a
l

C
o
s
t

Copy-on-Fork

Figure 7-5. Total estimated cost of fork-related page copies on a SPUR, as a function
of the fraction of page copies and cache flushes because of copy-on-write or copy-on-
reference faults. The attributes of the SPUR architecture that were used to compute the
curves in the graph are given in Table 7-5. The lower lines of the graph are best-case
scenarios for copy-on-write and COW-COR and the upper two lines worst-case
scenarios. The best-case combines the lowest possible flush cost and copy cost for
copy-on-write and COW-COR and the highest possible copy cost for copy-on-fork.
The worst-case is when all of the data for each page is present in the cache and clean at
fork time and when the highest possible flush and copy costs occur for copy-on-write
and COW-COR at other times. A cost of 1.0 corresponds to the cost of copying every
page at fork time (copy-on-fork). The 6 vertical lines are the copy fractions for the 4
benchmarks. The vertical line marked ‘‘Others’’ is the copy fraction for Andrew, User
A and User B.

154

Figure 7-5 gives the worst case and best case performance of copy-on-write and

COW-COR on a SPUR. The computation of the performance is a complex one that

involves the percentage of data that is resident in the cache during copy and flush

operations, and the percent of cache memory that is dirty (see Table 7-5 for the SPUR

attributes that were used in the computation, and Figure 7-5 for more explanation of the

computation). In both the best and the worst case, COW-COR is strictly better than

pure copy-on-write; this shows that COW-COR may be a reasonable alternative to pure

ii
SPUR Attributesii

Page Size 4096 Bytesii
Cache Line Size 32 Bytesii

Copy data 12 Cyclesiiiiiiiiiiiiiiiiiiiiiiiiiiii
Cache read miss 23 Cyclesiiiiiiiiiiiiiiiiiiiiiiiiiiii
Write-back data 22 Cyclesiiiiiiiiiiiiiiiiiiiiiiiiiiii
Minimum cost 35 Cyclesiiiiiiiiiiiiiiiiiiiiiiiiiiii
Maximum cost 80 Cycles

Copy cost per cache
line

ii
Read tags 12 Cyclesiiiiiiiiiiiiiiiiiiiiiiiiiiii

Flush clean line 9 Cyclesiiiiiiiiiiiiiiiiiiiiiiiiiiii
Flush dirty line 25 Cycles

Flush Cost
c
c
c
c
c
c
c
c
c
c

ii
Page Fault Cost 500 Cyclesiic

c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 7-5. Attributes of the SPUR architecture [Woo88]. When a cache line is copied
at fork-time or because of a copy-on-write or copy-on-reference fault, the destination
of the copy will not be present in the cache. As a result the SPUR hardware will con-
sider this a cache miss and fetch the destination from memory even though it is being
totally overwritten. Hence the minimum copy cost is 35 cycles (12 for the copy and 23
to fetch the destination cache line). The maximum cost occurs when the source of the
copy is not present in the cache (an additional 23 cycles) and the cache line that is be-
ing replaced must be written back (an additional 22 cycles). The cost of a cache flush
ranges from 12 cycles if the line being flushed is not in the cache, to 37 cycles if the
line being flushed is dirty. The fault cost is extrapolated from the Mach fault cost of
approximately 500 instructions on a Sun-3 (234 microseconds on a 2 MIP machine).
Since each instruction on a SPUR takes one cycle, the fault cost is assumed to be 500
cycles. This fault cost is merely a rough estimate and will be higher when cache
behavior is taken into account.

155

copy-on-write for architectures like a SPUR with virtually-addressed caches. In addi-

tion, in the best case, COW-COR and pure copy-on-write can cut the fork cost by a fac-

tor of 2 over copy-on-fork schemes, but in the worst case the fork cost is up to three

times higher with COW-COR or pure copy-on-write. Thus, although COW-COR and

copy-on-write can potentially give a substantial performance improvement over copy-

on-fork schemes, they can potentially give an even more substantial performance degra-

dation.

The Sun-4 architecture has a much lower cache flushing cost than a SPUR (see

Tables 7-5 and 7-6). Figure 7-6 gives the worst case and best case performance of

copy-on-write and COW-COR on a Sun-4. Because of the lower cache flushing cost on

a Sun-4, COW-COR does not perform as well in comparison to pure copy-on-write

schemes as it does on a SPUR; COW-COR is slightly better than copy-on-write in some

cases and slightly worse in others. In addition, the degradation of both COW-COR and

copy-on-write in relation to pure copy-on-fork schemes is not as severe in the worst

case. However, even with the low cache flushing cost, the fork cost can still be up to

twice as high as copy-on-fork schemes.

The main conclusion that can be drawn from this discussion is that copy-on-write

mechanisms may not be worthwhile in architectures with virtually-addressed caches.

The actual performance advantages of copy-on-write will depend on program behavior,

the flush and copy costs of the architecture, and the actual implementation of the copy-

on-write mechanism. Although Figures 7-5 and 7-6 were derived for specific architec-

tures and the Sprite implementation, a similar graph could be easily drawn to determine

156

iii
Sun-4 Attributesii

Page Size 8192 Bytesiii
Cache Line Size 16 Bytesii

Copy data 10 Cyclesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Cache read miss 10 Cyclesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Write-back data 8 Cyclesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Minimum cost 20 Cyclesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Maximum cost 38 Cycles

Copy cost per cache
line

ii
Flush clean line 3 Cyclesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

3 CyclesFlush non-
consecutive dirty
linesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

8 Cycles

Flush Cost

Flush consecutive
dirty linescc

c
c
c
c
c
c
c
c
c
c
c
c

ii
Page Fault Cost 500 Cyclesiiicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 7-6. Attributes of the Sun-4 architecture [Kel88]. When a cache line is copied
at fork time or because of a copy-on-write or copy-on-reference fault, the destination
of the copy will not be present in the cache. As a result the Sun-4 hardware will con-
sider this a cache miss and fetch the destination from memory even though it is being
totally overwritten. Hence the minimum copy cost is 20 cycles (10 for the copy and 10
to fetch the destination cache line). The maximum cost occurs when the source of the
copy is not present in the cache (an additional 10 cycles) and the cache line that is be-
ing replaced must be written back (an additional 8 cycles). The cost of a cache flush
ranges from 3 cycles if the line being flushed is not in the cache, to 8 cycles if consecu-
tive dirty lines are being flushed; it only takes 3 cycles to flush a dirty cache line as
long as the next line in the cache is clean. The fault cost is extrapolated from the Mach
fault cost of approximately 500 instructions on a Sun-3 (234 microseconds on a 2 MIP
machine). Since each instruction on a Sun-4 takes one cycle, the fault cost is assumed
to be 500 cycles. This fault cost is merely a rough estimate and will be higher when
cache behavior is taken into account.

the potential benefit of copy-on-write mechanisms for any architecture and implementa-

tion.

7.6.5. Effect of Page Size

One reason why I measured only a small benefit from COW-COR under normal

use may be that the measurements were made on a machine with large pages (8

Kbytes). If the page size were smaller, several changes in COW-COR behavior would

157

0.63 (COW: ECD)
0.58 (COW: User A)

0.65 (COW: User B)

0.78 (COW-COR: ECD)
0.72 (COW-COR: Others)
0.67 (COW: Andrew)

COW-COR
Copy-on-Write

t
s
o
C

l
a
t
o
T

Copy Fraction

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0
1.00.90.80.70.60.50.40.30.20.10

Copy-on-Fork

Figure 7-6. Total estimated cost of fork-related page copies on a Sun-4, as a function
of the fraction of page copies and cache flushes because of copy-on-write or copy-on-
reference faults. The attributes of the Sun-4 architecture that were used to compute the
curves in the graph are given in Table 7-6. The lower lines of the graph are best-case
scenarios for copy-on-write and COW-COR and the upper two lines worst-case
scenarios. The best-case combines the lowest possible flush cost and copy cost for
copy-on-write and COW-COR and the highest possible copy cost for copy-on-fork.
The worst-case is when all of the data for each page is present in the cache and clean at
fork time and when the highest possible flush and copy costs occur for copy-on-write
and COW-COR at other times. A cost of 1.0 corresponds to the cost of copying every
page at fork time. The 6 vertical lines are the copy fractions for the 4 benchmarks.
The vertical line marked ‘‘Others’’ is the copy fraction for Andrew, User A and User
B.

occur:

g The total number of pages that are marked copy-on-write and copy-on-reference

would increase.

g The total number of copy-on-write and copy-on-reference faults would increase.

g The percentage of copy-on-write and copy-on-reference pages that are faulted on

out of the total number of copy-on-write and copy-on-reference pages would

158

decrease.

g A pure copy-on-write scheme might improve relative to a COW-COR scheme

because the percentage of pages that are copied on reference and then are later

modified might decrease.

The only machine that I could perform the measurements on was a Sun-3 which has a

fixed page size of 8 Kbytes. Although Sprite runs on Sun-2’s, they do not have enough

memory to allow me to measure either the ECD benchmark or normal use. However,

since the trend in hardware is towards large page sizes, the results that I measured on

the Sun-3 architecture should be applicable to most machines that will be built in the

future.

7.6.6. Effect on System Performance

In addition to just affecting fork performance, copy-on-write mechanisms can also

potentially affect overall system performance relative to copy-on-fork schemes. First of

all, by making forks faster, copy-on-write will improve overall system response time.

However, since fork time may only account for a small portion of the execution time of

a process, the actual improvement in overall system performance may be very small.

For example, the Andrew benchmark takes 280 seconds to complete. A pure copy-on-

write scheme could eliminate 33% of the 2846 page copy operations (see Tables 7-3

and 7-4). If the fault cost were 0, then 2.5 milliseconds could be saved on each of the

939 page copy operations that would be eliminated, for a total savings of 2.3 out of the

280 seconds of execution time. This is less than a 1% improvement in the performance

of the benchmark.

159

The other potential benefit from copy-on-write mechanisms is a reduction in

memory use. By eliminating 30 to 40 percent of the page copy operations that would

have been required under copy-on-fork, the amount of memory required to fork a pro-

cess with copy-on-write will be 30 to 40 percent smaller. If a very large process forks,

then this can potentially result in a substantial reduction in the demand placed on physi-

cal memory, which may result in an overall reduction in the number of page faults

encountered by the system. However, for the programs that I measured, the amount of

memory saved by copy-on-write in relation to the amount of physical memory available

should be insignificant. This is especially true given the fact that most processes

immediately exec after forking, so any extra memory will only be required for a brief

instant. For example, in the Andrew benchmark, no process that forks has more than

about 150 Kbytes of stack and heap, of which 100 Kbytes end up getting copied any-

way. Since the machine that I ran the benchmark on has 16 Mbytes of memory, the 50

Kbytes that are unnecessarily copied occupies an insignificant amount space.

7.7. Conclusions

Copy-on-write has been gaining popularity in recent years as a mechanism to pro-

vide better fork performance. My measurements of copy-on-write indicate that it can

indeed provide a tremendous performance improvement over copy-on-fork schemes if

very few of the virtually-copied pages are modified. However, the measurements of

normal use indicate that more than 58% of pages that are shared copy-on-write do get

modified. As a result, less than 42% of the page copy operations that would have been

required with a copy-on-fork scheme are eliminated. Thus, although copy-on-write has

160

tremendous potential, in practice it yields only a moderate performance gain over

copy-on-fork.

There are two additional factors that may make it difficult to achieve even the 40%

improvement suggested by the above measurements: page faults and cache flushing.

An extra page fault will occur for each of the copy-on-write pages that ends up getting

copied. Without a highly-tuned page fault handler, the additional page-fault overhead

will more than compensate for the reduction in page copy operations. In addition, the

architectural trend towards virtually-addressed caches has added the overhead of cache

flushes to any copy-on-write implementation. The actual overhead will depend on the

program behavior, the architecture, and the copy-on-write implementation, but my

experience suggests that copy-on-write may actually result in worse performance than

copy-on-fork for most applications on these machines. System designers need to pay

very close attention to the fault cost and the cache flushing overhead if they wish to

achieve the maximum benefit from copy-on-write.

The Sprite COW-COR scheme, which is a mixture of copy-on-write and copy-on-

reference, provides a simple alternative implementation to pure copy-on-write schemes.

It only requires 10 to 20 percent more page copy operations than a pure copy-on-write

scheme, yet requires fewer cache flushes on machines with virtually-addressed caches.

Estimates of the cache flushing overhead on a SPUR indicate that for the SPUR archi-

tecture COW-COR can actually provide slightly better fork performance than pure

copy-on-write. However, on the Sun-4 architecture, which has a lower cache flushing

cost than a SPUR, COW-COR can be slightly worse than pure copy-on-write. Thus,

whether or not COW-COR is better than pure copy-on-write will depend on the

161

architecture.

162

CHAPTER 8

Conclusions

This dissertation has described the design, implementation and performance of

several techniques for managing physical memory in a network operating system. In

addition to measuring the mechanisms used daily in Sprite, I have also measured a

variety of alternative mechanisms; these measurements provide the first quantitative

comparisons between many of the popular memory-management techniques. My meas-

urements have demonstrated that, by effectively utilizing physical memory, all worksta-

tions in a network, including those without disks, can attain high-performance data

access while retaining the ease of sharing possible with timesharing systems. This

high-performance can be attained while utilizing only a small portion of server CPU

cycles and network bandwidth.

There are two keys to providing high performance in a network operating system.

First, client caches must be allowed to become large without impacting virtual memory

performance. The variable-size cache mechanism that I developed for Sprite lets the

file cache vary in size while balancing the needs of the virtual memory system and the

file system. The Sprite mechanism is better than any fixed-size cache mechanism and is

a viable alternative to mapped files.

The Sprite mechanism has the advantage over mapped files that it allows the file

system to be penalized so that it will be more difficult for the file system to take

memory from the virtual memory system. The use of the penalty appears to be

163

effective in improving interactive response without degrading file system performance.

The optimal value of the penalty is not yet clear; how much to penalize the file system

will depend on the behavior of the users of the system.

The other key to attaining high performance is to use the correct writing policy on

clients and servers. There is a tradeoff between reliability and performance; the most

reliable policies give the worst performance, and the least reliable the best performance.

As CPUs get faster and disks do not, the writing policy will become even more impor-

tant; any policy that requires application programs to wait for the disk will cause seri-

ous performance degradation. The client and server writing policies that provides a

good compromise between reliability and performance are to delay write-backs for 30

seconds. This gives performance comparable to policies with longer delays, while

ensuring at most 60 seconds of data are lost in a system crash.

Attaining high performance need not require a relaxation on the consistency

guarantees for files. Most distributed systems that cache data on client workstations do

not provide the same level of consistency that was provided in timesharing systems.

Thus, users cannot share data as easily as they once could. However, the cache con-

sistency mechanism that I have developed for Sprite is simple yet lets file access have

the same semantics as if all processes on all of the workstations were executing on a

single timesharing system.

Another component to the performance of user programs in addition to file system

performance is the speed of process creation. A very popular optimization on many

systems is to eliminate page copy operations when a process is created through the use

164

of copy-on-write. Although copy-on-write can indeed provide a tremendous improve-

ment in performance, my measurements of normal use indicate that copy on write will

provide at best a 40% improvement in fork performance. Because of page fault over-

head and the extra cache overhead on machines with virtually-addressed caches, even

this 40% improvement will be very difficult to attain. The Sprite COW-COR scheme,

which is a mixture of copy-on-write and copy-on-reference, provides a simple alterna-

tive implementation to pure copy-on-write schemes. It only requires 10 to 20 percent

more page copies than a pure copy-on-write scheme, yet may require fewer cache

flushes on machines with virtually-addressed caches.

The next several years should be very exciting because of tremendous increases in

memory sizes, network speeds and CPU speeds. The work that I have presented in this

dissertation will hopefully be useful for system designers who want to get the best per-

formance out of the systems of the future. I believe that the key to attaining high per-

formance in both present and future systems is to effectively utilize large physical

memories. This will not only let users get their work done as efficiently as possible, but

will also greatly improve system scalability.

165

CHAPTER 9

Bibliography

[Akh87] P. Akhtar, ‘‘A Replacement for Berkeley Memory Management’’,

Proceedings of the USENIX 1987 Summer Conference, JUNE 1987, 69-79.

[BLM87] M. J. Bach, M. W. Luppi, A. S. Melamed and K. Yueh, ‘‘A Remote-File

Cache for RFS’’, Proceedings of the USENIX Summer 1987 Conference,

June 1987, 275-280.

[BCD72] A. Bensoussan, C. T. Clingen and R. C. Daley, ‘‘The MULTICS Virtual

Memory: Concepts and Design’’, Comm. of the ACM 15, 5 (May 1972).

[BiN84] A. D. Birrell and B. J. Nelson, ‘‘Implementing Remote Procedure Calls’’,

ACM Transactions on Computer Systems 2, 1 (Feb. 1984), 39-59.

[BBM72] D. G. Bobrow, J. D. Burchfiel, D. L. Murphy and R. S. Tomlinson,

‘‘TENEX, a Paged Time Sharing System for the PDP-10’’, Comm. of the

ACM 15, 3 (Mar. 1972), 1135-143.

[BKT85] M. R. Brown, K. N. Kolling and E. A. Taft, ‘‘The Alpine File System’’,

Trans. Computer Systems 3, 4 (Nov. 1985), 261-293.

[CaW86] L. F. Cabrera and J. Wylie, ‘‘QuickSilver Distributed File Services: An

Architecture for Horizontal Growth’’, Research Report RJ 5578 (56697),

San Jose, California, June 1986.

166

[ChR85] D. R. Cheriton and P. J. Roy, ‘‘Performance of the V Storage Server: A

Preliminary Report’’, Proc. of the 1985 ACM Computer Science

Conference, Mar. 1985, 302-308.

[DaD68] R. C. Daley and J. B. Dennis, ‘‘Virtual Memory, Processes and Sharing in

MULTICS’’, Comm. of the ACM 11, 5 (May 1968), 306-312.

[Flo86] R. Floyd, ‘‘Short-Term File Reference Patterns in a UNIX Environment’’,

Technical Report Tech. Rep. 177, The University of Rochester, Mar. 1986.

[GMS87] R. A. Gingell, J. P. Moran and W. A. Shannon, ‘‘Virtual Memory

Architecture in SunOS’’, Proceedings of the USENIX 1987 Summer

Conference, JUNE 1987, 81-94.

[Gus87] R. Gusella, ‘‘The Analysis of Diskless Workstation Traffic on the

Ethernet’’, Technical Report UCB/Computer Science Dpt. 87/379,

University of California, Berkeley, Dec. 1987.

[Hil86] M. D. Hill, et al., ‘‘SPUR: A VLSI Multiprocessor Workstation’’, IEEE

Computer 19, 11 (Nov. 1986), 8-22.

[How88] J. Howard, et al., ‘‘Scale and Performance in a Distributed File System’’,

Trans. Computer Systems 6, 1 (Feb. 1988), 51-81.

[Kel86] E. Kelly, Sun-4 Architecture Manual, Sun Microsystems Inc., Nov. 1986.

[Kel88] E. Kelly, Personal Communication, Oct. 1988.

[Ken86] C. A. Kent, Cache Coherence in Distributed Systems, Phd Thesis, Purdue

University, 1986.

167

[LZC86] E. Lazowska, J. Zahorjan, D. Cheriton and W. Zwaenepoel, ‘‘File Access

Performance of Diskless Workstations’’, Trans. Computer Systems, Aug.

1986.

[LLH85] P. Leach, P. Levine, J. Hamilton and B. Stumpf, ‘‘The File System of an

Integrated Local Network’’, Proc. of the 1985 ACM Computer Science

Conference, Mar. 1985, 309-324.

[Lea83] P. J. Leach, et al., ‘‘The Architecture of an Integrated Local Network’’,

IEEE Journal on Selected Areas in Communications SAC-1, 5 (Nov. 1983),

842-857.

[Li86] K. Li, Shared Virtual Memory on a Loosely Coupled Multiprocessor, PhD

Thesis, Yale University, 1986.

[MJL84] M. K. McKusick, W. N. Joy, S. J. Leffler and R. S. Fabry, ‘‘A Fast File

System for UNIX’’, Trans. Computer Systems 2, 3 (Aug. 1984), 181-197..

[Mor86] J. H. Morris, et al., ‘‘Andrew: A Distributed Personal Computing

Environment’’, Comm. of the ACM 29, 3 (Mar. 1986), 184-201.

[Mur72] D. L. Murphy, ‘‘Storage organization and management in TENEX’’,

Proceedings AFIPS Fall Joint Computer Conference 15, 3 (1972), 23-32.

[Nel86] M. N. Nelson, ‘‘The Sprite Virtual Memory System’’, Technical Report

UCB/Computer Science Dpt. 86/301, University of California, Berkeley,

June 1986.

[OCD88] J. K. Ousterhout, A. R. Cherenson, F. Douglis, M. N. Nelson and B. B.

Welch, ‘‘The Sprite Network Operating System’’, IEEE Computer 21, 2

168

(Feb. 1988), 23-36.

[Ous85] J. K. Ousterhout, et al., ‘‘A Trace-Driven Analysis of the 4.2 BSD UNIX

File System’’, Proceedings of the 10th Symp. on Operating System Prin.,

Dec. 1985, 15-24.

[PoW85] G. Popek and B. Walker, editors, The LOCUS Distributed System

Architecture, MIT Press, 1985.

[RaR81] R. F. Rashid and G. G. Robertson, ‘‘Accent: A communication oriented

network operating system kernel’’, Proceedings of the 8th Symposium on

Operating Systems Principles, 1981, 164-175.

[RaF86] R. F. Rashid and R. Fitzgerald, ‘‘The Integration of Virtual Memory

Management and Interprocess Communication in Accent’’, Trans.

Computer Systems 4, 2 (May 1986), 147-177.

[Ras88] R. Rashid, Personal Communication, Mar. 1988.

[Ras87] R. Rashid, et al., ‘‘Machine-Independent Virtual Memory Management for

Paged Uniprocessor and Multiprocessor Architectures’’, Conference on

Architectural Support for Programming Languages and Operating Systems

(ASPLOS II), Oct. 1987, 31-39.

[Red80] D. D. Redell, et al., ‘‘Pilot: An Operating System for a Personal

Computer’’, Communications of the ACM 23, 2 (Feb. 1980), 81-92.

[Rif86] A. P. Rifkin, et al., ‘‘RFS Architectural Overview’’, USENIX Association

1986 Summer Conference Proceedings, 1986.

169

[RiT74] D. M. Ritchie and K. Thompson, ‘‘The UNIX Time-Sharing System’’,

Comm. of the ACM 17, 7 (July 1974), 365-375..

[San85] R. Sandberg, et al., ‘‘Design and Implementation of the Sun Network

Filesystem’’, Proceedings of the USENIX 1985 Summer Conference, JUNE

1985, 119-130.

[Sat85] M. Satyanarayanan, et al., ‘‘The ITC Distributed File System: Principles

and Design’’, Proceedings of the 10th Symp. on Operating System Prin.,

1985, 35-50.

[SGN85] M. Schroeder, D. Gifford and R. Needham, ‘‘A Caching File System for a

Programmer’s Workstation’’, Proceedings of the 10th Symp. on Operating

System Prin., Dec. 1985, 25-34.

[Smi85] A. J. Smith, ‘‘Disk Cache - Miss Ratio Analysis and Design

Considerations’’, Trans. Computer Systems 3, 3 (Aug. 1985), 161-203.

[SSS85] Sun-3 Architecture Manual, Sun Microsystems Inc., July 1985.

[SCC86] E. W. Sznyter, P. Clancy and J. Crossland, ‘‘A New Virtual-Memory

Implementation for Unix’’, Proceedings of the USENIX 1986 Summer

Conference, JUNE 1986, 81-88.

[Tho87] J. G. Thompson, Efficient Analysis of Caching Systems, Phd Thesis,

University of California at Berkeley, 1987.

[Wal83] B. Walker, et al., ‘‘The LOCUS Distributed Operating System’’,

Proceedings of the 9th Symp. on Operating System Prin. 17, 5 (Nov. 1983),

49-70.

170

[Wel86] B. B. Welch, ‘‘The Sprite Remote Procedure Call System’’, Technical

Report UCB/Computer Science Dpt. 86/302, University of California,

Berkeley, June 1986.

[WeO86] B. B. Welch and J. K. Ousterhout, ‘‘Prefix Tables: A Simple Mechanism

for Locating Files in a Distributed Filesystem’’, Proc. of the 6th Int’l Conf.

on Distributed Computing Systems, May 1986, 184-189.

[Woo88] D. Wood, Personal Communication, Apr. 1988.

171

APPENDIX A

Detailed Results from Chapter 4

This appendix contains 5 tables of detailed results that were not given in Chapter

4. The five tables A-1 through A-5 contain the results of running the five benchmarks

Andrew, Vm-make, Sort, Ditroff and Diff on Sun-3 workstations. The top row of each

line contains the results and the bottom row contains the standard deviations from the 3

runs. The first two lines of each table are the results when the benchmark was run

locally on the file server. The next two lines are when the benchmark was run on a

client with no cache. The rest of the lines are for various client cache sizes. The first

column of each table is the elapsed time in seconds, the second column the number of

network bytes transferred during the benchmark, the third column the server utilization,

the fourth column the number of disk reads and disk writes and the last column the disk

utilization.

172

iii
Results for the Andrew Benchmarkiii

Elapsed Network Server Disk Disk
Cache Size

Time Kbytes Util I/O’s Utilii
265 -- -- 1553 14%

4 Mbytes Local, cold
2.53 -- -- 106.53 0.58iii
255 -- -- 924 10%

4 Mbytes Local, warm
2.53 -- -- 40.11 0.00ii
321 24361 17.66% 1387 9%

No cache, cold
1.53 75.63 0.09 6.35 0.00iii
307 24320 18.00% 863 6%

No cache, warm
6.08 2.31 0.11 359.80 1.73iii
301 14173 14.76% 650 5%

128 Kbytes
3.06 184.64 0.09 9.54 0.00iii
290 11118 14.00% 657 5%

256 Kbytes
1.00 108.15 0.03 10.58 0.00iii
286 9617 13.58% 644 5%

512 Kbytes
1.15 305.21 0.06 7.77 0.58iii
283 8380 13.26% 652 6%

1024 Kbytes
1.00 455.17 0.11 7.51 0.00iii
278 6303 12.66% 652 5%

2048 Kbytes
0.58 81.95 0.01 1.73 0.58iii
277 5496 12.43% 653 6%

3072 Kbytes
0.00 37.29 0.02 5.69 0.00iii
275 4378 12.13% 647 5%

4096 Kbytes, warm
0.00 13.00 0.01 1.73 0.00iii
288 6425 12.49% 1208 8%

4096 Kbytes, cold
2.31 381.73 0.07 85.81 0.58iiicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table A-1. Results from the Andrew Benchmark.

173

ii
Results for the VM Benchmarkii

Elapsed Network Server Disk Disk
Cache Size

Time Kbytes Util I/O’s Utilii
284.39 -- -- 948 7%

4 Mbytes Local, cold
1.03 -- -- 23.16 0.58ii

277.10 -- -- 586 5%
4 Mbytes Local, warm

1.03 -- -- 4.58 0.00ii
336.93 17849 13.88% 900 6%

No cache, cold
0.76 9.54 0.04 9.71 0.00ii

330.10 17717 14.03% 568 4%
No cache, warm

0.74 0.58 0.02 13.87 0.00ii
318.68 13847 12.02% 456 3%

128 Kbytes
0.25 194.07 0.06 1.73 0.00ii

313.33 11474 11.31% 473 3%
256 Kbytes

1.01 157.61 0.11 28.58 0.58ii
303.94 6870 9.91% 442 3%

512 Kbytes
0.42 135.74 0.03 6.24 0.00ii

298.09 4403 9.17% 437 3%
1024 Kbytes

0.82 150.41 0.04 2.65 0.00ii
296.16 3099 8.89% 430 3%

2048 Kbytes
1.49 48.68 0.06 0.58 0.00ii

295.49 2884 8.86% 430 3%
3072 Kbytes

0.81 3.06 0.02 5.03 0.58ii
295.77 2885 8.87% 432 3%

4096 Kbytes, warm
0.21 2.08 0.01 1.00 0.58ii

304.75 3956 8.97% 764 5%
4096 Kbytes, cold

0.18 0.58 0.01 2.65 0.00iicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table A-2. Results from the Vm-make Benchmark.

174

ii
Results for the Sort Benchmarkii

Elapsed Network Server Disk Disk
Cache Size

Time Kbytes Util I/O’s Utilii
63.56 -- -- 716 20%

4 Mbytes Local, cold
0.20 -- -- 16.09 0.58ii

59.70 -- -- 470 15%
4 Mbytes Local, warm

0.20 -- -- 3.06 0.00ii
74.84 6154 15.03% 855 21%

No cache, cold
0.40 9.81 0.05 11.14 0.00ii

70.79 6152 15.16% 564 16%
No cache, warm

0.44 2.31 0.08 9.54 1.53ii
68.82 6152 15.25% 527 16%

128 Kbytes
0.42 3.61 0.07 16.46 1.15ii

71.39 6170 14.83% 550 15%
256 Kbytes

2.89 35.16 0.35 71.60 1.15ii
71.92 6154 14.34% 462 12%

512 Kbytes
0.87 4.36 0.08 13.58 0.00ii

70.84 6105 13.99% 360 8%
1024 Kbytes

0.09 2.00 0.07 3.46 0.58ii
63.59 3392 9.39% 307 7%

2048 Kbytes
0.10 39.89 0.18 3.06 0.58ii

59.37 2058 7.37% 305 8%
3072 Kbytes

0.44 256.77 0.40 3.21 0.00ii
58.75 1730 7.04% 306 8%

4096 Kbytes, warm
0.04 29.37 0.02 2.00 0.00ii

64.74 3078 9.49% 581 13%
4096 Kbytes, cold

0.16 46.03 0.27 0.58 0.00iicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table A-3. Results from the Sort Benchmark.

175

ii
Results for the Ditroff Benchmarkii

Elapsed Network Server Disk Disk
Cache Size

Time Kbytes Util I/O’s Utilii
127.83 -- -- 289 5%

4 Mbytes Local, cold
0.38 -- -- 15.01 0.58ii

125.03 -- -- 133 2%
4 Mbytes Local, warm

0.38 -- -- 0.58 0.00ii
133.17 2050 4.93% 267 5%

No cache, cold
0.39 10.39 0.04 2.00 0.00ii

132.43 2362 5.12% 206 3%
No cache, warm

1.94 269.05 0.30 129.06 2.31ii
126.70 836 1.81% 116 2%

128 Kbytes
0.50 266.77 0.20 1.00 0.00ii

126.41 682 1.68% 117 2%
256 Kbytes

0.05 2.08 0.02 2.65 0.00ii
126.29 578 1.61% 118 2%

512 Kbytes
0.02 4.73 0.01 2.89 0.00ii

125.85 325 1.41% 119 2%
1024 Kbytes

0.01 1.15 0.02 2.65 0.00ii
125.87 325 1.42% 118 2%

2048 Kbytes
0.02 1.15 0.02 3.06 0.00ii

125.87 325 1.42% 118 2%
3072 Kbytes

0.02 1.15 0.02 3.06 0.00ii
128.01 839 2.05% 282 5%

4096 Kbytes, cold
0.92 270.49 0.28 46.77 0.00iic

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table A-4. Results from the Ditroff Benchmark.

176

iii
Results for the Diff Benchmarkiii

Elapsed Network Server Disk Disk
Cache Size

Time Kbytes Util I/O’s Utilii
21.09 -- -- 553 76%

4 Mbytes Local, cold
0.12 -- -- 0.58 0.58iii
4.60 -- -- 32 11%

4 Mbytes Local, warm
0.12 -- -- 1.73 0.58ii

25.15 2289 14.33% 548 63%
No cache, cold

0.13 5.20 0.08 3.61 0.58iii
8.47 2286 27.18% 24 4%

No cache, warm
0.10 0.00 0.10 1.15 0.58iii
8.66 2284 26.72% 24 4%

128 Kbytes
0.05 4.04 0.36 1.15 0.58iii
8.73 2285 26.56% 24 4%

256 Kbytes
0.07 1.15 0.51 1.15 0.58iii
8.69 2285 26.68% 24 4%

512 Kbytes
0.09 1.15 0.16 1.15 0.58iii
8.84 2308 26.49% 25 4%

1024 Kbytes
0.16 41.00 0.12 1.73 0.58iii
8.72 2285 26.56% 24 5%

2048 Kbytes
0.08 1.15 0.22 1.53 0.58iii
4.54 6 2.18% 24 8%

2128 Kbytes
0.01 0.58 0.74 1.15 0.58iii
4.53 5 2.18% 25 9%

3072 Kbytes
0.01 1.15 0.75 1.15 0.58iii
4.53 5 1.53% 26 10%

4096 Kbytes, warm
0.00 1.15 0.13 2.08 1.15iii

25.05 2284 14.21% 548 64%
4096 Kbytes, cold

0.13 0.00 0.10 0.58 0.00iiicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table A-5. Results from the Diff Benchmark.

177

APPENDIX B

Standard Deviations from Chapter 5

This appendix contains tables of the standard deviations for the results given in the

tables in Chapter 5. Each data point in the tables in Chapter 5 was computed by taking

the average of three runs of the given benchmark.

ii
Network Kbytes vs. Client Policy Standard Deviationsii

Andrew Vm Sort
Client ii

Policy Read Write Total Read Write Total Read Write Totalii
WT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6ii

WBOC 0.6 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0ii
ASAP 0.0 0.0 0.6 0.0 0.6 0.6 0.6 0.0 0.0ii

WBOC-ASAP 0.6 0.0 0.6 0.0 0.0 0.6 0.0 0.0 0.6ii
delay-30 0.0 2.5 2.0 0.0 2.6 2.1 1.2 61.4 62.6ii
full-delay 0.6 1.2 1.2 0.0 2.6 2.3 0.0 0.6 0.0ii
WT-TMP 0.6 1.7 1.7 0.0 1.2 1.7 0.0 1.2 1.2ii

WBOC-TMP 0.6 0.6 0.6 0.6 0.0 0.0 0.0 0.6 0.0ii
ASAP-TMP 0.0 0.0 0.0 0.6 0.0 0.6 0.0 0.0 0.0iic

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table B-1. Network Kbytes vs. Client Policy. This table shows the standard devia-
tions for the results in Table 5-4.

178

ii
Disk Traffic Standard Deviations: 30-Second Delay on Serverii

Andrew Vm-make Sortii
Disk Writes Disk Writes Disk Writesiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiii

Data Total Data Total Data Total
Client
Policy Disk

Util Ind/
Desc

Disk
Util Ind/

Desc

Disk
Util Ind/

Descii
WT 0.0 1.0 2.9 2.1 0.0 2.1 5.1 3.5 1.2 19.9 4.0 23.8ii

WBOC 0.0 0.0 2.6 2.6 0.0 0.6 4.2 4.7 1.0 13.3 1.0 12.4ii
ASAP 0.0 2.6 5.6 6.1 0.0 0.0 2.5 2.5 0.6 13.9 1.2 14.5ii

WBOC-
ASAP

0.0 0.0 6.6 6.6 0.0 0.6 3.6 3.2 0.6 14.4 1.2 15.6
ii
delay-30 0.0 0.6 9.3 9.5 0.0 0.6 3.6 4.0 0.0 0.0 0.6 0.6ii

full-
delay

0.0 0.0 23.3 23.3 0.0 0.0 1.7 1.7 0.0 0.0 0.6 0.6
ii

WT-
TMP

0.0 1.0 7.0 7.8 0.0 0.6 6.0 5.5 0.6 0.0 0.6 0.6
ii

WBOC-
TMP

0.6 0.6 2.6 2.9 0.0 0.0 7.4 7.4 0.0 0.0 0.6 0.6
ii

ASAP-
TMP

0.6 0.0 5.7 5.7 0.0 0.6 2.5 3.1 0.0 0.0 0.6 0.6
iic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table B-2. The table shows the standard deviations for the results in Table 5-5.

ii
Disk Traffic Standard Deviations: Write-Through on Serverii

Andrew Vm-make Sortii
Disk Writes Disk Writes Disk Writesiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiii

Data Total Data Total Data Total
Client
Policy Disk

Util Ind/
Desc

Disk
Util Ind/

Desc

Disk
Util Ind/

Descii
WT 1.0 1.2 8.5 7.4 0.0 2.3 13.7 15.9 0.6 1.2 2.6 3.8ii

WBOC 0.0 0.0 3.8 3.8 0.0 0.0 4.4 4.4 0.6 0.0 2.0 2.0ii
ASAP 0.6 2.6 4.0 6.4 0.0 0.6 3.1 3.6 0.6 0.0 0.6 0.6ii

WBOC-
ASAP

1.0 1.0 3.2 2.3 0.0 0.6 5.0 5.5 0.6 0.0 0.0 0.0
ii
delay-30 1.0 3.5 8.9 12.3 0.0 1.5 2.5 2.3 0.6 8.2 32.9 41.0ii

full-
delay

0.6 0.0 14.8 14.8 0.0 0.0 7.8 7.8 0.0 0.0 1.5 1.5
ii

WT-
TMP

0.0 1.2 1.7 2.5 0.0 1.2 7.5 6.6 0.0 0.6 2.5 3.1
ii

WBOC-
TMP

0.6 0.0 1.2 1.2 0.0 0.0 4.0 4.0 0.0 0.0 2.6 2.6
ii

ASAP-
TMP

0.6 3.1 7.2 10.3 0.0 0.0 1.7 1.7 0.0 0.0 0.0 0.0
iic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table B-3. The table shows the standard deviations for the results in Table 5-6.

179

ii
Disk Traffic Standard Deviations: ASAP on Serverii

Andrew Vm-make Sortii
Disk Writes Disk Writes Disk Writesiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiii

Data Total Data Total Data Total
Client
Policy Disk

Util Ind/
Desc

Disk
Util Ind/

Desc

Disk
Util Ind/

Descii
WT 0.6 7.0 8.9 15.6 0.0 0.6 2.9 3.2 0.0 1.0 2.1 2.5ii

WBOC 0.0 1.0 17.6 17.4 0.0 2.5 6.5 8.2 0.6 0.6 6.0 5.6ii
ASAP 0.0 0.6 10.1 10.4 0.0 1.2 7.4 8.2 0.6 0.6 10.4 9.8ii

WBOC-
ASAP

0.6 0.6 5.0 5.5 0.0 1.5 7.9 9.5 0.6 0.6 7.0 7.5
ii
delay-30 0.0 5.5 13.1 18.2 0.0 1.0 6.8 7.1 0.6 21.7 11.4 32.7ii

full-
delay

0.6 0.0 11.1 11.1 0.0 2.5 0.6 2.0 0.6 0.6 2.5 2.0
ii

WT-
TMP

0.6 1.5 12.5 13.5 0.0 2.3 9.1 7.4 0.0 1.5 1.5 3.0
ii

WBOC-
TMP

0.0 0.6 1.2 1.0 0.0 1.0 3.1 4.0 0.6 0.6 9.0 8.5
ii

ASAP-
TMP

0.6 3.1 20.1 18.6 0.6 0.6 7.6 7.9 0.0 0.6 1.7 2.1
iic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table B-4. The table shows the standard deviations for the results in Table 5-7.

ii
Disk Traffic Standard Deviations: Last Dirty Blockii

Andrew Vm-make Sortii
Disk Writes Disk Writes Disk Writesiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiii

Data Total Data Total Data Total
Client
Policy Disk

Util Ind/
Desc

Disk
Util Ind/

Desc

Disk
Util Ind/

Descii
WT 0.0 1.0 6.0 6.7 0.0 0.6 5.5 5.6 0.6 0.6 2.6 2.1ii

WBOC 0.0 0.0 3.8 3.8 0.0 0.0 3.5 3.5 0.6 0.6 2.3 2.9ii
ASAP 0.0 13.0 12.3 23.8 0.0 0.0 4.5 4.5 1.2 1.2 4.4 4.9ii

WBOC-
ASAP

0.0 0.6 7.2 7.0 0.0 0.0 2.6 2.6 0.6 0.0 6.7 6.7
ii
delay-30 0.0 0.6 2.3 2.9 0.0 2.1 0.6 1.5 2.1 43.1 4.0 46.9ii

full-
delay

0.0 0.6 2.9 3.2 0.0 0.0 2.5 2.5 0.6 0.0 1.7 1.7
ii

WT-
TMP

0.0 1.2 4.5 3.6 0.0 1.2 6.4 7.0 0.0 0.0 0.6 0.6
ii

WBOC-
TMP

0.0 0.0 6.2 6.2 0.0 0.0 4.0 4.0 0.6 0.6 1.0 0.6
ii

ASAP-
TMP

0.0 0.0 7.2 7.2 0.0 0.0 8.0 8.0 0.0 0.0 4.4 4.4
iic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table B-5. The table shows the standard deviations for the results in Table 5-8.

180

iii
Client Elapsed Time and Server Utilization: 30-Second Delay on Serveriii

Andrew Vm-make Sort
Client iii

Elapsed Server Elapsed Server Elapsed Server
Policy

Time Util Time Util Time Utilii
WT 0.0 0.1 0.6 0.1 0.6 0.1iii

WBOC 0.6 0.0 0.4 0.0 0.1 0.1iii
ASAP 1.2 0.0 0.9 0.0 1.1 0.1iii

WBOC-ASAP 0.6 0.0 0.9 0.0 0.9 0.0iii
delay-30 0.6 0.0 0.2 0.0 0.1 0.3iii
full-delay 1.0 0.0 0.1 0.0 0.0 0.1iii
WT-TMP 0.6 0.0 0.5 0.0 0.0 0.1iii

WBOC-TMP 0.0 0.0 0.4 0.0 0.0 0.1iii
ASAP-TMP 2.9 0.1 0.3 0.0 0.0 0.1iiicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table B-6. This table contains the standard deviations for the results given in Table
5-9.

iii
Client Elapsed Time and Server Utilization: Write-Through on Serveriii

Andrew Vm-make Sort
Client iii

Elapsed Server Elapsed Server Elapsed Server
Policy

Time Util Time Util Time Utilii
WT 1.5 0.1 2.7 0.1 0.0 0.0iii

WBOC 2.5 0.1 1.7 0.0 0.3 0.0iii
ASAP 1.7 0.1 0.5 0.0 0.1 0.1iii

WBOC-ASAP 4.6 0.2 0.8 0.0 0.2 0.0iii
delay-30 0.6 0.1 0.5 0.0 2.8 0.1iii
full-delay 0.6 0.0 1.0 0.0 0.1 0.0iii
WT-TMP 2.1 0.1 1.6 0.0 0.3 0.1iii

WBOC-TMP 2.9 0.1 0.7 0.0 0.1 0.0iii
ASAP-TMP 0.6 0.0 0.8 0.0 0.1 0.1iiicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table B-7. This table contains the standard deviations for the results given in Table
5-10.

181

iii
Client Elapsed Time and Server Utilization: ASAP on Serveriii

Andrew Vm-make Sort
Client iii

Elapsed Server Elapsed Server Elapsed Server
Policy

Time Util Time Util Time Utilii
WT 0.0 0.0 0.4 0.0 0.1 0.1iii

WBOC 0.6 0.0 0.9 0.0 0.2 0.2iii
ASAP 0.0 0.0 0.5 0.0 0.0 0.0iii

WBOC-ASAP 0.6 0.0 1.1 0.1 0.0 0.1iii
delay-30 0.0 0.0 1.9 0.1 0.2 0.5iii
full-delay 0.0 0.0 1.0 0.0 0.1 0.1iii
WT-TMP 0.6 0.0 1.8 0.0 0.1 0.1iii

WBOC-TMP 0.6 0.0 0.7 0.0 0.0 0.2iii
ASAP-TMP 1.0 0.0 0.5 0.0 0.0 0.1iiicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table B-8. This table contains the standard deviations for the results given in Table
5-11.

iii
Client Elapsed Time and Server Utilization: LDB Policyiii

Andrew Vm-make Sort
Client iii

Elapsed Server Elapsed Server Elapsed Server
Policy

Time Util Time Util Time Utilii
WT 1.2 0.0 1.9 0.1 0.7 0.1iii

WBOC 0.6 0.0 1.1 0.0 0.4 0.1iii
ASAP 0.0 0.0 1.4 0.0 0.2 0.2iii

WBOC-ASAP 1.0 0.0 1.4 0.1 0.3 0.1iii
delay-30 0.6 0.0 0.5 0.0 0.8 0.6iii
full-delay 0.6 0.0 1.1 0.0 0.0 0.1iii
WT-TMP 0.6 0.0 0.4 0.0 0.2 0.0iii

WBOC-TMP 0.6 0.0 0.6 0.0 1.2 0.2iii
ASAP-TMP 1.0 0.0 1.1 0.0 0.0 0.1iiicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table B-9. This table contains the standard deviations for the results given in Table
5-12.

182

APPENDIX C

Detailed Results from Chapter 6

This appendix contains tables of results from Chapter 6. The tables were not

given in Chapter 6 because they contained unnecessary details. The tables C.1 through

C.10 give the performance of the variable-sized cache benchmark for the 5 physical

memory sizes. The top row in each table is the result when the client did not use any

cache. The next few rows before the row labeled norm are when the file system cache

was fixed at various sizes. The row labeled norm was with a variable-size cache with

no file system penalty. The remaining rows are when the file system was penalized

from 60 to 960 seconds. Tables C.1, C.3, C.5, C.7, and C.9 contain the results from the

benchmarks; each row was generated by taking the average of the results from three

runs of the benchmark in the given configuration. Tables C.2, C.4, C.6, C.8, and C.10

contain the standard deviations of the three runs of the benchmark.

In tables C.1, C.3, C.5, C.7, and C.9 each row is subdivided into two rows. The

upper row is the result of the benchmark and the lower row is the result relative to the

row labeled norm.

The columns of each table are as follows. The first column is the amount of fixed

cache or the amount of penalty. The second column is the percent of the server’s CPU

that was utilized while running the benchmark. The third column is the number of

seconds that the benchmark took to execute. Column 4 is the total number of page

faults and Column 5 is the number of faults that came from swap space. The sixth

183

column is the number of pages that were written out to swap space. Columns 7 through

9 are the number of file system Kbytes that were transferred by the network. Finally,

Columns 10 through 12 are the total number of Kbytes, including both VM and FS

bytes, that were transferred by the network.

iii
10 MegaBytes of Memory on the Clientiii

Faults FS Net I/O Total Net I/OServer Elap iiiiiiiiiiiiiiii Page ii

Util Time Total Swap Outs Read Write Total Read Write Totalii
24.91 982 4569 2830 3098 33948 9810 43759 74647 39506 114154nocc
1.07 1.04 1.38 1.32 0.83 1.49 1.03 1.36 1.42 0.90 1.18iii
23.87 951 4701 3332 3192 30185 9506 39692 71776 39804 1115800.5M
1.02 1.01 1.42 1.56 0.85 1.33 1.00 1.23 1.37 0.90 1.16iii
36.73 1899 48869 44919 6272 28787 9485 38273 438587 76257 5148451M
1.57 2.02 14.77 20.99 1.67 1.26 1.00 1.19 8.35 1.73 5.33ii
23.37 942 3309 2140 3748 22761 9485 32247 52533 43987 96521norm
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00ii
23.19 928 4009 2703 3183 24828 9485 34314 60434 39398 9983260
0.99 0.99 1.21 1.26 0.85 1.09 1.00 1.06 1.15 0.90 1.03iii
24.04 923 4424 3064 3234 27075 9485 36561 66234 39990 106225120
1.03 0.98 1.34 1.43 0.86 1.19 1.00 1.13 1.26 0.91 1.10iii
23.34 923 3806 2628 3042 29600 9485 39086 63686 38260 101946240
1.00 0.98 1.15 1.23 0.81 1.30 1.00 1.21 1.21 0.87 1.06iii
23.59 909 3556 2399 3090 29666 9486 39152 61681 38629 100311480
1.01 0.97 1.07 1.12 0.82 1.30 1.00 1.21 1.17 0.88 1.04iii
23.87 919 3837 2654 3106 29727 9485 39213 64080 38829 102910960
1.02 0.98 1.16 1.24 0.83 1.31 1.00 1.22 1.22 0.88 1.07iiicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table C-1. 10 Mbytes of memory on Client.

iii
Standard Deviations: 10 MegaBytes of Memory on the Clientiii

Faults FS Net I/O Total Net I/OServer Elap iiiiiiiiiiiiiii Page iii

Util Time Total Swap Outs Read Write Total Read Write Totalii
nocc 0.4 34 744 591 247 25 0.0 25 6182 2258 8425iii
0.5M 0.4 8.7 439 363 79 16 2.3 15 3674 763 4378iii
1M 0.3 66 2731 2811 27 215 0.6 215 22609 948 23556ii

norm 0.4 20 212 213 149 721 0.6 721 2166 1288 3247ii
60 0.7 34 958 769 202 172 0.6 172 7821 1900 9431iii
120 0.8 39 1026 863 304 929 0.0 929 7982 2800 10536iii
240 0.2 43 727 628 194 256 0.0 256 5836 1797 7614iii
480 0.2 18 332 287 107 310 0.6 311 3033 986 4015iii
960 1.0 6.4 934 778 164 205 0.0 205 7637 1599 9179iiic

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table C-2. Standard deviations 10 Mbytes of memory on Client.

184

ii
11 MegaBytes of Memory on the Clientiii

Faults FS Net I/O Total Net I/OServer Elap iiiiiiiiiiiiiiii Page ii

Util Time Total Swap Outs Read Write Total Read Write Totalii
23.57 846 2105 836 2481 33941 9810 43751 54005 33636 87642nocc
1.07 1.01 0.86 0.57 0.85 1.73 1.03 1.50 1.28 0.91 1.11iii
21.82 793 1739 866 2230 30242 9508 39750 47041 30935 779760.5M
0.99 0.94 0.71 0.59 0.76 1.54 1.00 1.37 1.12 0.84 0.99iii
21.57 850 2304 1323 2431 29380 9485 38866 50857 32720 835781M
0.98 1.01 0.94 0.90 0.83 1.50 1.00 1.34 1.21 0.89 1.06iii
35.71 1896 47323 43525 6051 28419 9485 37905 425297 73998 4992962M
1.63 2.26 19.22 29.55 2.06 1.45 1.00 1.30 10.11 2.01 6.33ii
21.96 840 2462 1473 2934 19609 9485 29094 42080 36781 78862norm
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00ii
21.13 821 2027 1097 2355 23287 9482 32769 42206 31828 7403460
0.96 0.98 0.82 0.74 0.80 1.19 1.00 1.13 1.00 0.87 0.94iii
20.85 798 1708 874 2065 24476 9482 33958 40754 29356 70110120
0.95 0.95 0.69 0.59 0.70 1.25 1.00 1.17 0.97 0.80 0.89iii
21.54 797 1766 915 2265 28855 9485 38341 45819 31249 77068240
0.98 0.95 0.72 0.62 0.77 1.47 1.00 1.32 1.09 0.85 0.98iii
22.11 777 1714 867 2303 29195 9485 38681 45729 31476 77205480
1.01 0.93 0.70 0.59 0.79 1.49 1.00 1.33 1.09 0.86 0.98iii
21.38 780 1760 910 2053 29500 9484 38984 46402 29406 75808960
0.97 0.93 0.72 0.62 0.70 1.50 1.00 1.34 1.10 0.80 0.96iiicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table C-3. 11 Mbytes of memory on Client.

iii
Standard Deviations: 11 MegaBytes of Memory on the Clientiii

Faults FS Net I/O Total Net I/OServer Elap iiiiiiiiiiiiiiii Page ii

Util Time Total Swap Outs Read Write Total Read Write Totalii
nocc 0.5 23 34 20 166 27 0.0 27 337 1468 1537iii
0.5M 0.1 14 58 39 25 26 2.3 27 530 232 751iii
1M 0.4 8.5 105 91 65 8.0 0.0 8.0 894 574 1458iii
2M 2.2 285 14042 12851 964 172 0.0 172 116909 11367 128158ii

norm 0.1 14 35 30 129 325 0.0 324 223 1093 1268ii
60 0.6 27 159 151 168 756 2.3 757 2097 1416 2495iii
120 0.2 5.1 73 56 130 206 2.3 208 807 1085 1510iii
240 0.8 8.9 84 73 290 1009 0.0 1009 1435 2515 3950iii
480 0.5 16 46 46 187 228 0.0 228 635 1610 2206iii
960 0.2 9.6 35 30 93 147 2.3 150 364 771 534iiicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table C-4. Standard deviations with 11 Mbytes of memory on Client.

185

iii
12 MegaBytes of Memory on the Clientiii

Faults FS Net I/O Total Net I/OServer Elap iiiiiiiiiiiiiiii Page ii

Util Time Total Swap Outs Read Write Total Read Write Totalii
23.02 800 1931 670 1766 33936 9810 43747 52424 27498 79922nocc
1.10 1.02 0.90 0.55 0.75 2.22 1.03 1.76 1.50 0.87 1.20iii
21.18 768 1485 623 1620 30241 9508 39750 44819 25692 705120.5M
1.02 0.98 0.69 0.51 0.69 1.98 1.00 1.60 1.29 0.81 1.06iii
21.47 783 1592 767 1872 29336 9485 38822 44810 27819 726301M
1.03 1.00 0.74 0.63 0.80 1.92 1.00 1.57 1.29 0.88 1.09iii
22.94 878 2975 1844 2640 28840 9485 38326 55914 34651 905662M
1.10 1.12 1.39 1.52 1.12 1.88 1.00 1.55 1.60 1.10 1.36iii
38.41 2217 63571 59273 6674 22599 9486 32085 554644 82920 6375643M
1.84 2.82 29.68 48.82 2.84 1.48 1.00 1.29 15.91 2.62 9.59ii
20.86 787 2142 1214 2351 15306 9482 24789 34864 31592 66456norm
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00ii
20.11 763 1813 901 1842 16826 9484 26311 33623 27255 6087960
0.96 0.97 0.85 0.74 0.78 1.10 1.00 1.06 0.96 0.86 0.92iii
20.10 751 1523 704 1619 23177 9484 32661 37788 25521 63310120
0.96 0.95 0.71 0.58 0.69 1.51 1.00 1.32 1.08 0.81 0.95iii
20.04 754 1490 676 1622 25194 9485 34679 39604 25577 65181240
0.96 0.96 0.70 0.56 0.69 1.65 1.00 1.40 1.14 0.81 0.98iii
20.74 756 1463 627 1849 26156 9481 35638 40430 27506 67936480
0.99 0.96 0.68 0.52 0.79 1.71 1.00 1.44 1.16 0.87 1.02iii
21.25 780 1658 849 2024 28242 9482 37724 44261 29089 73351960
1.02 0.99 0.77 0.70 0.86 1.85 1.00 1.52 1.27 0.92 1.10iiic

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table C-5. 12 Mbytes of memory on Client.

iii
Standard Deviations: 12 MegaBytes of Memory on the Clientiii

Faults FS Net I/O Total Net I/OServer Elap iiiiiiiiiiiiiii Page iii

Util Time Total Swap Outs Read Write Total Read Write Totalii
nocc 0.2 9.9 26 24 42 4.6 0.0 4.6 207 354 222iii
0.5M 0.5 13 26 45 126 21 2.3 24 190 1066 878iii
1M 0.4 3.6 43 31 25 28 0.0 28 339 213 421iii
2M 0.1 6.4 48 43 53 34 0.0 34 401 480 778iii
3M 0.8 159 7489 6900 521 83 0.6 83 62404 6107 68449ii

norm 0.6 27 140 126 55 620 2.3 623 1151 467 1180ii
60 0.2 13 17 14 42 567 2.3 569 719 323 411iii
120 0.1 4.0 9.3 2.0 57 247 2.3 249 198 497 503iii
240 0.3 9.8 30 33 88 480 0.6 480 492 746 1230iii
480 0.5 23 12 40 158 1302 0.0 1302 1295 1324 289iii
960 0.2 4.2 41 36 73 308 2.3 310 642 618 1216iiicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table C-6. Standard deviations with 12 Mbytes of memory on Client.

186

iii
14 MegaBytes of Memory on the Clientiii

Faults FS Net I/O Total Net I/OServer Elap iiiiiiiiiiiiiiii Page ii

Util Time Total Swap Outs Read Write Total Read Write Totalii
20.94 782 1684 440 1189 33942 9810 43752 50298 22560 72858nocc
1.10 1.13 1.05 0.62 0.72 4.52 1.04 2.58 2.27 0.89 1.53iii
19.80 714 1090 317 1160 30279 9508 39787 41509 21706 632160.5M
1.04 1.03 0.68 0.45 0.70 4.03 1.00 2.34 1.87 0.86 1.33iii
19.28 740 1309 475 1084 29368 9485 38854 42379 21087 634671M
1.02 1.07 0.82 0.67 0.66 3.91 1.00 2.29 1.91 0.83 1.34iii
20.30 747 1411 586 1523 28908 9485 38394 42805 24796 676022M
1.07 1.08 0.88 0.83 0.92 3.85 1.00 2.26 1.93 0.98 1.42iii
20.86 763 1690 870 2008 23471 9485 32957 39536 28862 683993M
1.10 1.10 1.05 1.23 1.22 3.13 1.00 1.94 1.78 1.14 1.44iii
21.88 846 2810 1736 2674 19751 9485 29236 45093 34735 798294M
1.15 1.22 1.75 2.45 1.62 2.63 1.00 1.72 2.03 1.37 1.68iii
36.79 1953 53122 49494 6211 15252 9485 24738 459903 76288 5361915M
1.94 2.82 33.08 69.81 3.76 2.03 1.00 1.46 20.74 3.01 11.29ii
18.99 692 1606 709 1653 7508 9469 16978 22171 25317 47489norm
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00ii
18.58 671 1355 555 1222 12478 9484 21963 25196 21761 4695760
0.98 0.97 0.84 0.78 0.74 1.66 1.00 1.29 1.14 0.86 0.99iii
18.26 678 1280 503 1194 14112 9484 23596 26265 21561 47826120
0.96 0.98 0.80 0.71 0.72 1.88 1.00 1.39 1.18 0.85 1.01iii
18.47 689 1288 509 1128 19127 9483 28610 31542 21149 52691240
0.97 1.00 0.80 0.72 0.68 2.55 1.00 1.69 1.42 0.84 1.11iii
18.47 691 1268 479 1095 19102 9485 28588 31342 20874 52216480
0.97 1.00 0.79 0.68 0.66 2.54 1.00 1.68 1.41 0.82 1.10iii
18.19 714 1291 491 1266 18912 9482 28394 31364 22315 53679960
0.96 1.03 0.80 0.69 0.77 2.52 1.00 1.67 1.41 0.88 1.13iiic

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table C-7. 14 Mbytes of memory on Client.

187

iii
Standard Deviations: 14 MegaBytes of Memory on the Clientiii

Faults FS Net I/O Total Net I/OServer Elap iiiiiiiiiiiiiiii Page ii

Util Time Total Swap Outs Read Write Total Read Write Totalii
nocc 0.0 1.2 32 24 53 0.0 0.0 0.0 251 456 204iii
0.5M 0.4 2.3 16 16 101 16 2.3 17 142 859 999iii
1M 0.3 15 9.5 20 28 0.0 0.0 0.0 78 224 154iii
2M 0.1 5.5 31 27 130 6.1 0.0 6.1 280 1130 1388iii
3M 0.4 11 70 68 136 26 0.0 26 617 1185 1778iii
4M 0.4 13 172 136 50 64 0.6 64 1435 490 1924iii
5M 1.6 274 12915 11907 861 209 0.6 209 107462 10312 117774ii

norm 0.3 10 46 33 125 457 6.9 461 783 1036 664ii
60 0.2 9.6 47 28 22 714 2.3 714 942 189 1008iii
120 0.1 14 75 78 4.4 594 2.3 595 847 68 913iii
240 0.5 5.0 37 21 110 1865 2.1 1866 1667 992 2657iii
480 0.5 1.5 38 29 78 541 0.0 541 520 662 908iii
960 0.5 23 14 17 175 590 2.3 588 711 1485 1566iiic

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table C-8. Standard deviations with 14 Mbytes of memory on Client.

188

iii
16 MegaBytes of Memory on the Clientiii

Faults FS Net I/O Total Net I/OServer Elap iiiiiiiiiiiiiiiii Page ii

Util Time Total Swap Outs Read Write Total Read Write Totalii
19.82 721 1253 158 431 33938 9810 43748 46596 16029 62625nocc
1.09 1.09 0.80 0.24 0.46 4.75 1.04 2.63 2.19 0.84 1.55iii
17.40 667 699 33 88 30308 9506 39814 38135 12525 506600.5M
0.96 1.01 0.45 0.05 0.10 4.24 1.00 2.40 1.79 0.66 1.25iii
18.49 690 904 195 649 29423 9485 38909 38991 17278 562701M
1.02 1.04 0.58 0.29 0.70 4.11 1.00 2.34 1.83 0.90 1.39iii
20.06 691 1021 289 1011 28926 9484 38411 39497 20368 598652M
1.10 1.04 0.65 0.43 1.09 4.04 1.00 2.31 1.85 1.07 1.48iii
19.57 729 1277 459 1247 23469 9485 32955 35993 22289 582833M
1.08 1.10 0.82 0.68 1.34 3.28 1.00 1.98 1.69 1.17 1.44iii
20.22 736 1445 634 1662 19818 9484 29302 33647 25736 593844M
1.11 1.11 0.93 0.94 1.79 2.77 1.00 1.76 1.58 1.35 1.47iii
21.33 753 1707 868 2239 15924 9485 25410 31857 30589 624465M
1.17 1.14 1.09 1.29 2.41 2.23 1.00 1.53 1.49 1.60 1.54iii
22.27 870 2848 1724 2939 13099 9485 22585 38521 36759 752806M
1.22 1.31 1.83 2.56 3.16 1.83 1.00 1.36 1.81 1.92 1.86iii
38.73 2491 76889 72290 6968 8591 9485 18077 651019 88140 7391607M
2.13 3.76 49.29 107.42 7.50 1.20 1.00 1.09 30.53 4.61 18.28ii
18.20 663 1560 673 929 7152 9460 16613 21324 19110 40435norm
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00ii
17.34 651 1151 432 697 9155 9485 18641 19965 17157 3712260
0.95 0.98 0.74 0.64 0.75 1.28 1.00 1.12 0.94 0.90 0.92iii
18.25 653 1190 455 913 11781 9485 21267 23056 19087 42144120
1.00 0.99 0.76 0.68 0.98 1.65 1.00 1.28 1.08 1.00 1.04iii
16.95 660 993 307 342 14352 9485 23838 24013 14269 38282240
0.93 1.00 0.64 0.46 0.37 2.01 1.00 1.43 1.13 0.75 0.95iii
16.27 651 979 291 405 14253 9485 23739 23799 14798 38597480
0.89 0.98 0.63 0.43 0.44 1.99 1.00 1.43 1.12 0.77 0.95iii
16.50 652 987 298 607 14283 9485 23769 23923 16500 40424960
0.91 0.98 0.63 0.44 0.65 2.00 1.00 1.43 1.12 0.86 1.00iiicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table C-9. 16 Mbytes of memory on Client.

189

iii
Standard Deviations: 16 MegaBytes of Memory on the Clientiii

Faults FS Net I/O Total Net I/OServer Elap iiiiiiiiiiiiiiii Page ii

Util Time Total Swap Outs Read Write Total Read Write Totalii
nocc 0.0 0.6 6.9 0.6 160 4.6 0.0 4.6 42 1348 1306iii
0.5M 0.7 4.4 24 12 55 32 2.3 34 215 471 276iii
1M 1.1 6.4 3.6 35 430 4.6 0.0 4.6 78 3649 3724iii
2M 0.4 1.5 25 27 41 61 1.7 63 263 335 178iii
3M 0.3 21 12 9.1 210 24 0.6 24 130 1785 1838iii
4M 0.2 18 35 38 58 51 2.3 54 313 478 183iii
5M 0.4 14 64 16 219 10 0.0 10 509 1783 1428iii
6M 0.5 13 441 341 108 69 0.0 69 3596 976 3727iii
7M 1.6 410 18882 17673 1061 380 0.0 380 157007 13399 170366ii

norm 0.9 5.2 21 5.5 299 18 2.3 16 125 2538 2472ii
60 pen 0.4 1.5 8.1 5.5 214 215 0.0 215 181 1791 1970iii
120 pen 0.9 9.3 51 40 287 456 0.0 456 663 2465 2874iii
240 pen 0.5 3.8 18 23 141 140 0.0 140 152 1204 1116iii
480 pen 0.5 3.1 21 20 123 415 0.0 415 506 1020 591iii
960 pen 0.6 4.0 11 20 306 197 0.0 197 203 2605 2785iiic

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table C-10. Standard deviations with 16 Mbytes of memory on Client.

1

Physical Memory Management in a Network Operating System

Michael Newell Nelson

Abstract

This dissertation develops and measures methods of using large main memories to

provide high performance in a network operating system. The dissertation covers three

areas: file caching, virtual memory, and the interaction between the two. The work in

all three areas was done as part of Sprite, a new network operating system that is being

built here at Berkeley.

The first part of the dissertation presents results obtained through the development

of the Sprite file system, which uses large main-memory file caches to achieve high

performance. Sprite provides non-write-through file caching on both client and server

machines. A simple cache consistency mechanism permits files to be shared by

multiple clients without danger of stale data. Benchmark programs indicate that client

caches allow diskless Sprite workstations to perform within 0-8% of workstations with

disks. In addition, client caching reduces server loading by 50% and network traffic by

75%.

In addition to demonstrating the performance advantages of client caching, this

dissertation also shows the advantage of writing policies that delay the writing of blocks

from client caches to server caches and from server caches to disk. A measurement of 9

different writing policies on the client and 4 on the server shows that delayed-write

policies provide the best performance in terms of network bytes transferred, disk

2

utilization, server utilization and elapsed time. More restrictive policies such as write-

through can cause benchmarks to execute from 25% to 100% more slowly than if

delayed-write policies are used.

The second part of this dissertation looks at the interaction between the virtual

memory system and the file system. It describes a mechanism that has been

implemented as part of Sprite that allows the file system cache to vary in size in

response to the needs of the virtual memory system and the file system. This is done by

having the file system of each machine negotiate with the virtual memory system over

physical memory use. This variable-size cache mechanism provides better performance

than a fixed-size file system cache of any size over a mix of file-intensive and virtual-

memory-intensive programs.

The last part of this dissertation focuses on copy-on-write mechanisms for efficient

process creation. It describes a simple copy-on-write mechanism that has been

implemented as part of Sprite which is a combination of copy-on-write (COW) and

copy-on-reference (COR). The COW-COR mechanism can potentially improve fork

performance over copy-on-fork schemes from 10 to 100 times if many page copies are

avoided. However, in normal use more than 70% of the pages have to be copied

anyway. The overhead of handling the page faults required to copy the pages results in

worse overall performance than copy-on-fork; with a more optimized implementation

forks would be about 20% faster with COW-COR than with copy-on-fork. A pure

COW scheme would eliminate 10 to 20 percent of the page copies required under

COW-COR and would provide up to a 20% improvement in fork performance over

COW-COR. However, because of extra cache-flushing overhead on machines with

3

virtually-addressed caches, pure COW may have worse overall performance than

COW-COR on these types of machines.

i

Acknowledgements

There are many people that I would like to thank for making this dissertation

possible. First, I would like to thank my committee, John Ousterhout, Domenico

Ferrari, and Stuart Dreyfus for many useful comments that improved the presentation of

my ideas. In particular, I would like to thank John Ousterhout who has helped me to

become a much better writer and helped to steer me in the right direction. I have only to

look back at the first drafts of my Masters report to see how far I have come because of

John’s help.

I especially want to thank the other members of the Sprite project, Brent Welch,

Fred Douglis and Andrew Cherenson. Without their efforts Sprite would not exist. In

particular, I want to thank Brent Welch. I had great fun working with Brent as we built

the Sprite file system and I have learned a great deal from the technical discussions that

we have had over the past several years.

The other members of the SPUR project have also been a great help. I feel very

lucky to have been a part of the SPUR project. It not only provided me with the

oppurtunity to learn about all facets of systems, from hardware to software, but it also

allowed me to work with a great bunch of people.

Finally, I want to thank my girlfriend Betty. She has always been around to

provide me with encouragement and was very patient during those numerous times

when I had to stay late at school to work on my dissertation.

ii

Table of Contents

CHAPTER 1: Introduction ... 1

1.1 I versus We ... 4
1.2 Overview of Sprite ... 4
1.3 Thesis Overview ... 5

CHAPTER 2: File Data Caching .. 10

2.1 Introduction .. 10
2.2 Server Caches ... 11
2.3 Client Caches .. 12
2.4 Writing Policy .. 14
2.4.1 Client and Server Writing Policies .. 18
2.5 Cache Consistency ... 18
2.5.1 Previous Implementations of Cache Consistency 21
2.5.1.1 NFS ... 21
2.5.1.2 Cedar ... 22
2.5.1.3 Andrew ... 22
2.5.1.4 LOCUS ... 22
2.5.1.5 Apollo ... 23
2.5.1.6 RFS ... 23
2.5.1.7 V Storage Server ... 24
2.5.2 Verifying Consistency ... 24
2.6 Trace-Driven Analyses of Client Caching ... 25
2.7 Summary and Conclusions ... 26

CHAPTER 3: Sprite File System Caching ... 28

3.1 Introduction .. 28
3.2 Basic Cache Structure .. 30
3.2.1 Block Addressing .. 31
3.2.2 Writing Policy ... 32
3.2.3 Block Management .. 32
3.2.4 Synchronization ... 33
3.3 Cache Consistency ... 35

iii

3.3.1 Concurrent Write-Sharing ... 35
3.3.2 Sequential Write-Sharing .. 36
3.3.3 Simulation Results ... 37
3.3.3.1 Cache Consistency Overhead ... 37
3.3.3.2 Simulation of Several Mechanisms .. 39
3.4 Sprite File Structure on Disk .. 40
3.5 Details of the Implementation .. 43
3.5.1 Implementing Delayed-Write .. 43
3.5.2 Providing Reliability ... 44
3.5.3 Cache Consistency Implementation .. 46
3.5.4 Crash Recovery ... 51
3.6 Summary ... 53

CHAPTER 4: File System Performance .. 55

4.1 Introduction .. 55
4.2 Micro-benchmarks .. 56
4.3 Macro-benchmarks ... 57
4.3.1 Application Speedups .. 58
4.3.1.1 Server Load .. 58
4.3.1.2 Network Utilization .. 62
4.3.1.3 Disk Utilization .. 64
4.3.1.4 Contention .. 65
4.4 Advantage of Local Name Caching ... 68
4.5 Comparison to Other Systems .. 70
4.6 Summary ... 71

CHAPTER 5: Writing Policies .. 73

5.1 Introduction .. 73
5.2 Network Load ... 78
5.3 Disk Traffic ... 83
5.4 Client Elapsed Time ... 92
5.5 Server Utilization ... 97
5.6 Effect of Disk Layout on Write Performance .. 103
5.7 Comparison to NFS .. 105
5.8 Summary and Conclusions ... 105

CHAPTER 6: Variable-Sized Caches ... 109

iv

6.1 Introduction .. 109
6.2 Previous Work .. 110
6.3 Sprite Mechanism ... 112
6.4 Variable-Size Cache Performance ... 114
6.4.1 Variable vs. Fixed-Size Caches ... 116
6.4.2 Negotiation Activity .. 120
6.5 Penalizing the File System ... 122
6.6 Comparison to Mapped Files ... 130
6.7 Summary and Conclusions ... 131

CHAPTER 7: Copy-on-Write For Sprite ... 133

7.1 Introduction .. 133
7.2 Sprite Virtual Memory ... 135
7.3 Previous Work .. 136
7.4 Sprite COW-COR ... 138
7.4.1 Overview ... 138
7.4.2 Trees of Descendants ... 141
7.4.3 Eliminating Extra Copy-on-Write Faults .. 141
7.4.4 Backing Store .. 142
7.5 Comparison of Sprite Scheme and Shadow Objects 143
7.6 Copy-on-Write Performance .. 144
7.6.1 Raw Performance .. 145
7.6.2 Realistic Performance .. 146
7.6.3 COW-COR vs. Pure Copy-on-Write ... 149
7.6.4 Cost of Virtually Addressed Caches ... 150
7.6.5 Effect of Page Size .. 156
7.6.6 Effect on System Performance .. 158
7.7 Conclusions .. 159

CHAPTER 8: Conclusions ... 162

CHAPTER 9: Bibliography ... 165

APPENDIX A: Detailed Results from Chapter 4 .. 171

APPENDIX B: Standard Deviations from Chapter 5 177

APPENDIX C: Detailed Results from Chapter 6 .. 182

v

List of Figures

2-1. File caches in a Distributed File System ... 10
2-2. Sequential and Concurrent Write Sharing .. 20

3-1. List Data Structures ... 34
3-2. File Descriptor Structure ... 41
3-3. Open Race Condition .. 48
3-4. Solution to Open Race Condition ... 50

4-1. Client Degradation and Network Traffic .. 61
4-2. Server Loading .. 62
4-3. Disk Utilization ... 64
4-4. Contention ... 67
4-5. Sprite vs. Andrew vs. NFS .. 71

5-1. Network Kbytes vs. Client Policy ... 81
5-2. Extra Disk Writes With Write-Through on Server 86
5-3. Extra Disk Writes With ASAP on Server ... 89
5-4. Extra Disk Write With LDB ... 91
5-5. Extra Elapsed Time With Write-Through on Server 95
5-6. Extra Elapsed Time ASAP on Server ... 97
5-7. Extra Elapsed Time LDB on Server ... 99
5-8. Extra Server Utilization with Write-Through on Server 100
5-9. Extra Server Utilization with ASAP on Server 101
5-10. Extra Server Utilization with LDB on Server 102

6-1. Elapsed Time and Utilization with Fixed-Size Caches 117
6-2. Mbytes Transferred with Fixed-size Caches ... 118
6-3. Elapsed Time and Utilization Variable vs. Fixed 119
6-4. Mbytes Transferred Variable vs. Fixed ... 120
6-5. Elapsed Time and Server Utilization With Penalty 123
6-6. Network Traffic with Penalty .. 125

7-1. Mach Copy-on-Write .. 137
7-2. Sprite Copy-on-Write .. 139
7-3. Sprite Fork Chains ... 144

vi

7-4. COW-COR and Pure COW Cost .. 150
7-5. Cost of COW-COR and Pure COW on SPUR 153
7-6. Cost of COW-COR and Pure COW on a Sun-4 157

vii

List of Tables

3-1. Sprite User-Level File System Operations. .. 29
3-2. Client Caching Simulation Results ... 38
3-3. Traffic Without Cache Consistency .. 38

4-1. Cost of File Lookup .. 56
4-2. Read and Write Rates .. 57
4-3. Macro-benchmarks .. 59
4-4. Execution Times ... 60
4-5. Andrew Contention Results .. 66
4-6. Client-Level Name Caching Improvements ... 69

5-1. Client Writing Policies .. 76
5-2. Server Writing Policies ... 77
5-3. Benchmarks ... 79
5-4. Network Kbytes vs. Client Policy ... 80
5-5. Disk Traffic with 30-Second Delay on Server 84
5-6. Disk Traffic with Write-Through on Server ... 85
5-7. Disk Traffic with ASAP on Server .. 88
5-8. Disk Traffic with LDB Policy ... 90
5-9. Elapsed Time and Server Utilization: Delay-30 on Server 93
5-10. Elapsed Time and Server Utilization: WT on Server 94
5-11. Elapsed Time and Server Utilization: ASAP on Server 96
5-12. Elapsed Time and Server Utilization: Last-dirty-block Policy 98
5-13. Client Degradation Improvement with Shorter Seek Times 104

6-1. Edit-Compile-Debug Benchmark ... 115
6-2. Traffic between VM and FS .. 121
6-3. Concurrent Sort and Interactive Benchmark Response Time 127
6-4. Concurrent Sort and Interactive Benchmark Memory Usage 128
6-5. Concurrent Sort and Interactive Benchmark 10% Dirty 129
6-6. Cost of No Mapped Files .. 130

7-1. Raw Sprite COW-COR Performance ... 146
7-2. Sprite COW-COR Benchmarks .. 147
7-3. Realistic Sprite COW-COR Performance ... 148

viii

7-4. COW-COR vs. Copy-on-Write ... 151
7-5. Attributes of the SPUR architecture .. 154
7-6. Attributes of the Sun-4 architecture .. 156

A-1. Results from the Andrew Benchmark .. 172
A-2. Results from the Vm-make Benchmark ... 173
A-3. Results from the Sort Benchmark .. 174
A-4. Results from the Ditroff Benchmark .. 175
A-5. Results from the Diff Benchmark .. 176

B-1. Network Kbytes vs. Client Policy .. 177
B-2. Disk Traffic with 30-Second Delay on Server 178
B-3. Disk Traffic with Write-Through on Server ... 178
B-4. Disk Traffic with ASAP on Server ... 179
B-5. Disk Traffic with LDB Policy .. 179
B-6. Elapsed Time and Server Utilization: Delay-30 on Server 180
B-7. Elapsed Time and Server Utilization: Write-Through on Server 180
B-8. Elapsed Time and Server Utilization: ASAP on Server 181
B-9. Elapsed Time and Server Utilization: LDB Policy 181

C-1. VM-FS Results with 10 Mbytes on Client ... 183
C-2. Standard Deviations with 10 Mbytes on Client 183
C-3. VM-FS Results with 11 Mbytes on Client ... 184
C-4. Standard Deviations with 11 Mbytes on Client 184
C-5. VM-FS Results with 12 Mbytes on Client ... 185
C-6. Standard Deviations with 12 Mbytes on Client 185
C-7. VM-FS Results with 14 Mbytes on Client ... 186
C-8. Standard Deviations with 14 Mbytes on Client 187
C-9. VM-FS Results with 16 Mbytes on Client ... 188
C-10. Standard Deviations with 16 Mbytes on Client 189

